Plant versus Animal Iron

Plant versus Animal Iron.jpeg

It is commonly thought that those who eat plant-based diets may be more prone to iron deficiency, but it turns out that they're no more likely to suffer from iron deficiency anemia than anybody else. This may be because not only do those eating meat-free diets tend to get more fiber, magnesium, and vitamins like A, C, and E, but they also get more iron.

The iron found predominantly in plants is non-heme iron, which isn't absorbed as well as the heme iron found in blood and muscle, but this may be a good thing. As seen in my video, The Safety of Heme vs. Non-Heme Iron, avoidance of heme iron may be one of the key elements of plant-based protection against metabolic syndrome, and may also be beneficial in lowering the risk from other chronic diseases such as heart disease.

The data linking coronary heart disease and the intake of iron, in general, has been mixed. This inconsistency of evidence may be because of where the iron comes from. The majority of total dietary iron is non-heme iron, coming mostly from plants. So, total iron intake is associated with lower heart disease risk, but iron intake from meat is associated with significantly higher risk for heart disease. This is thought to be because iron can act as a pro-oxidant, contributing to the development of atherosclerosis by oxidizing cholesterol with free radicals. The risk has been quantified as a 27% increase in coronary heart disease risk for every 1 milligram of heme iron consumed daily.

The same has been found for stroke risk. The studies on iron intake and stroke have had conflicting results, but that may be because they had never separated out heme iron from non-heme iron... until now. Researchers found that the intake of meat (heme) iron, but not plant (non-heme) iron, was associated with an increased risk of stroke.

The researchers also found that higher intake of heme iron--but not total or plant (non-heme) iron--was significantly associated with greater risk for type 2 diabetes. There may be a 16% increase in risk for type 2 diabetes for every 1 milligram of heme iron consumed daily.

The same has also been found for cancer, with up to 12% increased risk for every milligram of daily heme iron exposure. In fact, we can actually tell how much meat someone is eating by looking at their tumors. To characterize the mechanisms underlying meat-related lung cancer development, researchers asked lung cancer patients how much meat they ate and examined the gene expression patterns in their tumors. They identified a signature pattern of heme-related gene expression. Although they looked specifically at lung cancer, they expect these meat-related gene expression changes may occur in other cancers as well.

We do need to get enough iron, but only about 3% of premenopausal white women have iron deficiency anemia these days. However, the rates are worse in African and Mexican Americans. Taking into account our leading killers--heart disease, cancer, and diabetes--the healthiest source of iron appears to be non-heme iron, found naturally in abundance in whole grains, beans, split peas, chickpeas, lentils, dark green leafy vegetables, dried fruits, nuts, and seeds.

But how much money can be made on beans, though? The processed food industry came up with a blood-based crisp bread, made out of rye flour and blood from cattle and pigs, which is one of the most concentrated sources of heme iron, about two-thirds more than blood from chickens. If blood-based crackers don't sound particularly appetizing, you can always snack on cow blood cookies. And there are always blood-filled biscuits, whose filling has been described as "a dark-colored, chocolate flavored paste with a very pleasant taste." (It's dark-colored because spray-dried pig blood can have a darkening effect on the food product's color.) The worry is not the color or taste, it's the heme iron, which, because of its potential cancer risk, is not considered safe to add to foods intended for the general population.

Previously, I've touched on the double-edged iron sword in Risk Associated With Iron Supplements and Phytates for the Prevention of Cancer. It may also help answer Why Was Heart Disease Rare in the Mediterranean?

Those eating plant-based diets get more of most nutrients since whole plant foods are so nutrient dense. See Nutrient-Dense Approach to Weight Management.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank

Original Link

Plant versus Animal Iron

Plant versus Animal Iron.jpeg

It is commonly thought that those who eat plant-based diets may be more prone to iron deficiency, but it turns out that they're no more likely to suffer from iron deficiency anemia than anybody else. This may be because not only do those eating meat-free diets tend to get more fiber, magnesium, and vitamins like A, C, and E, but they also get more iron.

The iron found predominantly in plants is non-heme iron, which isn't absorbed as well as the heme iron found in blood and muscle, but this may be a good thing. As seen in my video, The Safety of Heme vs. Non-Heme Iron, avoidance of heme iron may be one of the key elements of plant-based protection against metabolic syndrome, and may also be beneficial in lowering the risk from other chronic diseases such as heart disease.

The data linking coronary heart disease and the intake of iron, in general, has been mixed. This inconsistency of evidence may be because of where the iron comes from. The majority of total dietary iron is non-heme iron, coming mostly from plants. So, total iron intake is associated with lower heart disease risk, but iron intake from meat is associated with significantly higher risk for heart disease. This is thought to be because iron can act as a pro-oxidant, contributing to the development of atherosclerosis by oxidizing cholesterol with free radicals. The risk has been quantified as a 27% increase in coronary heart disease risk for every 1 milligram of heme iron consumed daily.

The same has been found for stroke risk. The studies on iron intake and stroke have had conflicting results, but that may be because they had never separated out heme iron from non-heme iron... until now. Researchers found that the intake of meat (heme) iron, but not plant (non-heme) iron, was associated with an increased risk of stroke.

The researchers also found that higher intake of heme iron--but not total or plant (non-heme) iron--was significantly associated with greater risk for type 2 diabetes. There may be a 16% increase in risk for type 2 diabetes for every 1 milligram of heme iron consumed daily.

The same has also been found for cancer, with up to 12% increased risk for every milligram of daily heme iron exposure. In fact, we can actually tell how much meat someone is eating by looking at their tumors. To characterize the mechanisms underlying meat-related lung cancer development, researchers asked lung cancer patients how much meat they ate and examined the gene expression patterns in their tumors. They identified a signature pattern of heme-related gene expression. Although they looked specifically at lung cancer, they expect these meat-related gene expression changes may occur in other cancers as well.

We do need to get enough iron, but only about 3% of premenopausal white women have iron deficiency anemia these days. However, the rates are worse in African and Mexican Americans. Taking into account our leading killers--heart disease, cancer, and diabetes--the healthiest source of iron appears to be non-heme iron, found naturally in abundance in whole grains, beans, split peas, chickpeas, lentils, dark green leafy vegetables, dried fruits, nuts, and seeds.

But how much money can be made on beans, though? The processed food industry came up with a blood-based crisp bread, made out of rye flour and blood from cattle and pigs, which is one of the most concentrated sources of heme iron, about two-thirds more than blood from chickens. If blood-based crackers don't sound particularly appetizing, you can always snack on cow blood cookies. And there are always blood-filled biscuits, whose filling has been described as "a dark-colored, chocolate flavored paste with a very pleasant taste." (It's dark-colored because spray-dried pig blood can have a darkening effect on the food product's color.) The worry is not the color or taste, it's the heme iron, which, because of its potential cancer risk, is not considered safe to add to foods intended for the general population.

Previously, I've touched on the double-edged iron sword in Risk Associated With Iron Supplements and Phytates for the Prevention of Cancer. It may also help answer Why Was Heart Disease Rare in the Mediterranean?

Those eating plant-based diets get more of most nutrients since whole plant foods are so nutrient dense. See Nutrient-Dense Approach to Weight Management.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank

Original Link

Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

Antioxidant- and Folate-Rich Foods for Depression

Antioxidant- and Folate-Rich Foods for Depression.jpeg

According to the Centers for Disease Control and Prevention, the rates of all of our top 10 killers have fallen or stabilized except for one, suicide. As shown in my video, Antioxidants & Depression, accumulating evidence indicates that free radicals may play important roles in the development of various neuropsychiatric disorders including major depression, a common cause of suicide.

In a study of nearly 300,000 Canadians, for example, greater fruit and vegetable consumption was associated with lower odds of depression, psychological distress, self-reported mood and anxiety disorders and poor perceived mental health. They conclude that since a healthy diet comprised of a high intake of fruits and vegetables is rich in anti-oxidants, it may consequently dampen the detrimental effects of oxidative stress on mental health.

But that study was based on asking how many fruits and veggies people ate. Maybe people were just telling the researchers what they thought they wanted to hear. What if you actually measure the levels of carotenoid phytonutrients in people's bloodstreams? The same relationship is found. Testing nearly 2000 people across the United States, researchers found that a higher total blood carotenoid level was indeed associated with a lower likelihood of elevated depressive symptoms, and there appeared to be a dose-response relationship, meaning the higher the levels, the better people felt.

Lycopene, the red pigment predominantly found in tomatoes (but also present in watermelon, pink grapefruit, guava and papaya) is the most powerful carotenoid antioxidant. In a test tube, it's about 100 times more effective at quenching free radicals than a more familiar antioxidant like vitamin E.

Do people who eat more tomatoes have less depression, then? Apparently so. A study of about a thousand older men and women found that those who ate the most tomato products had only about half the odds of depression. The researchers conclude that a tomato-rich diet may have a beneficial effect on the prevention of depressive symptoms.

Higher consumption of fruits and vegetables has been found to lead to a lower risk of developing depression, but if it's the antioxidants can't we just take an antioxidant pill? No.

Only food sources of antioxidants were protectively associated with depression. Not antioxidants from dietary supplements. Although plant foods and food-derived phytochemicals have been associated with health benefits, antioxidants from dietary supplements appear to be less beneficial and may, in fact, be detrimental to health. This may indicate that the form and delivery of the antioxidants are important. Alternatively, the observed associations may be due not to antioxidants but rather to other dietary factors, such as folate, that also occur in plant-rich diets.

In a study of thousands of middle-aged office workers, eating lots of processed food was found to be a risk factor for at least mild to moderate depression five years later, whereas a whole food pattern was found to be protective. Yes, it could be because of the high content of antioxidants in fruits and vegetables but could also be the folate in greens and beans, as some studies have suggested an increased risk of depression in folks who may not have been eating enough.

Low folate levels in the blood are associated with depression, but since most of the early studies were cross-sectional, meaning a snapshot in time, we didn't know if the low folate led to depression or the depression led to low folate. Maybe when you have the blues you don't want to eat the greens.

But since then a number of cohort studies were published, following people over time. They show that a low dietary intake of folate may indeed be a risk factor for severe depression, as much as a threefold higher risk. Note this is for dietary folate intake, not folic acid supplements; those with higher levels were actually eating healthy foods. If you give people folic acid pills they don't seem to work. This may be because folate is found in dark green leafy vegetables like spinach, whereas folic acid is the oxidized synthetic compound used in food fortification and dietary supplements because it's more shelf-stable. It may have different effects on the body as I previously explored in Can Folic Acid Be Harmful?

These kinds of findings point to the importance of antioxidant food sources rather than dietary supplements. But there was an interesting study giving people high dose vitamin C. In contrast to the placebo group, those given vitamin C experienced a decrease in depression scores and also greater FSI. What is FSI? Frequency of Sexual Intercourse.

Evidently, high dose vitamin C improves mood and intercourse frequency, but only in sexual partners that don't live with one another. In the placebo group, those not living together had sex about once a week, and those living together a little higher, once every five days, with no big change on vitamin C. But for those not living together, on vitamin C? Every other day! The differential effect for non-cohabitants suggests that the mechanism is not a peripheral one, meaning outside the brain, but a central one--some psychological change which motivates the person to venture forth to have intercourse. The mild antidepressant effect they found was unrelated to cohabitation or frequency, so it does not appear that the depression scores improved just because of the improved FSI.

For more mental health video, see:

Anything else we can do to enhance our sexual health and attractiveness? See:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Antioxidant- and Folate-Rich Foods for Depression

Antioxidant- and Folate-Rich Foods for Depression.jpeg

According to the Centers for Disease Control and Prevention, the rates of all of our top 10 killers have fallen or stabilized except for one, suicide. As shown in my video, Antioxidants & Depression, accumulating evidence indicates that free radicals may play important roles in the development of various neuropsychiatric disorders including major depression, a common cause of suicide.

In a study of nearly 300,000 Canadians, for example, greater fruit and vegetable consumption was associated with lower odds of depression, psychological distress, self-reported mood and anxiety disorders and poor perceived mental health. They conclude that since a healthy diet comprised of a high intake of fruits and vegetables is rich in anti-oxidants, it may consequently dampen the detrimental effects of oxidative stress on mental health.

But that study was based on asking how many fruits and veggies people ate. Maybe people were just telling the researchers what they thought they wanted to hear. What if you actually measure the levels of carotenoid phytonutrients in people's bloodstreams? The same relationship is found. Testing nearly 2000 people across the United States, researchers found that a higher total blood carotenoid level was indeed associated with a lower likelihood of elevated depressive symptoms, and there appeared to be a dose-response relationship, meaning the higher the levels, the better people felt.

Lycopene, the red pigment predominantly found in tomatoes (but also present in watermelon, pink grapefruit, guava and papaya) is the most powerful carotenoid antioxidant. In a test tube, it's about 100 times more effective at quenching free radicals than a more familiar antioxidant like vitamin E.

Do people who eat more tomatoes have less depression, then? Apparently so. A study of about a thousand older men and women found that those who ate the most tomato products had only about half the odds of depression. The researchers conclude that a tomato-rich diet may have a beneficial effect on the prevention of depressive symptoms.

Higher consumption of fruits and vegetables has been found to lead to a lower risk of developing depression, but if it's the antioxidants can't we just take an antioxidant pill? No.

Only food sources of antioxidants were protectively associated with depression. Not antioxidants from dietary supplements. Although plant foods and food-derived phytochemicals have been associated with health benefits, antioxidants from dietary supplements appear to be less beneficial and may, in fact, be detrimental to health. This may indicate that the form and delivery of the antioxidants are important. Alternatively, the observed associations may be due not to antioxidants but rather to other dietary factors, such as folate, that also occur in plant-rich diets.

In a study of thousands of middle-aged office workers, eating lots of processed food was found to be a risk factor for at least mild to moderate depression five years later, whereas a whole food pattern was found to be protective. Yes, it could be because of the high content of antioxidants in fruits and vegetables but could also be the folate in greens and beans, as some studies have suggested an increased risk of depression in folks who may not have been eating enough.

Low folate levels in the blood are associated with depression, but since most of the early studies were cross-sectional, meaning a snapshot in time, we didn't know if the low folate led to depression or the depression led to low folate. Maybe when you have the blues you don't want to eat the greens.

But since then a number of cohort studies were published, following people over time. They show that a low dietary intake of folate may indeed be a risk factor for severe depression, as much as a threefold higher risk. Note this is for dietary folate intake, not folic acid supplements; those with higher levels were actually eating healthy foods. If you give people folic acid pills they don't seem to work. This may be because folate is found in dark green leafy vegetables like spinach, whereas folic acid is the oxidized synthetic compound used in food fortification and dietary supplements because it's more shelf-stable. It may have different effects on the body as I previously explored in Can Folic Acid Be Harmful?

These kinds of findings point to the importance of antioxidant food sources rather than dietary supplements. But there was an interesting study giving people high dose vitamin C. In contrast to the placebo group, those given vitamin C experienced a decrease in depression scores and also greater FSI. What is FSI? Frequency of Sexual Intercourse.

Evidently, high dose vitamin C improves mood and intercourse frequency, but only in sexual partners that don't live with one another. In the placebo group, those not living together had sex about once a week, and those living together a little higher, once every five days, with no big change on vitamin C. But for those not living together, on vitamin C? Every other day! The differential effect for non-cohabitants suggests that the mechanism is not a peripheral one, meaning outside the brain, but a central one--some psychological change which motivates the person to venture forth to have intercourse. The mild antidepressant effect they found was unrelated to cohabitation or frequency, so it does not appear that the depression scores improved just because of the improved FSI.

For more mental health video, see:

Anything else we can do to enhance our sexual health and attractiveness? See:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What to Eat to Protect Against Kidney Cancer

NF-Sept8 Can Diet Protect Against Kidney Cancer_.jpeg

58,000 Americans are diagnosed with kidney cancer every year, and 13,000 die. And the numbers have been going up. Approximately 4 percent of cases are hereditary, but what about the other 96 percent? The only accepted risk factor has been tobacco use, but cigarette smoking has been declining.

Nitrosamines are one of the most potent carcinogens in cigarette smoke. One hot dog has as many nitrosamines and nitrosamides as five cigarettes. And these carcinogens are also found in fresh meat as well: beef, chicken and pork. So even though smoking rates have dropped, perhaps the rise in kidney cancer over the last few decades may have something to do with meat consumption. But would kidney cancer just be related to the processed meats like bacon, sausage, hot dogs and cold cuts that have nitrate and nitrite additives, or fresh meat as well?

The NIH-AARP study featured in my video Can Diet Protect Against Kidney Cancer? is the largest prospective study on diet and health ever performed--about 500,000 followed for nine years. In addition to examining nitrate and nitrite intake from processed meat, they also looked at intake from other sources such as fresh meat, eggs and dairy. Nitrite from animal sources, not just processed meats, was associated with an increased risk of kidney cancer, and total intake of nitrate and nitrite from processed meat sources was also associated with kidney cancer risk. The researchers found no associations with nitrate or nitrite intake from plant sources, but nitrates from processed meat was associated with cancer.

When meat producers advertise their bacon or lunch meat as "uncured," this means no nitrites or nitrates added. But if you look at the small print you'll see something like, "except for celery juice." That's just a sneaky way to add nitrites. Processed meat producers ferment the nitrates in celery to create nitrites, then add it to the meat; a practice even the industry admits "may be viewed as incorrect at best or deceptive at worst."

But that same fermentation of nitrates to nitrites can happen thanks to bacteria on our tongue when we eat vegetables. So why are nitrates and nitrites from vegetables on our tongue harmless, but nitrates and nitrites from vegetables in meat linked to cancer? The actual carcinogens are not nitrites, but nitrosamines and nitrosamides. In our stomach, to turn nitrites into nitros-amines, and nitros-amides we need amines and amides, which are concentrated in animal products. And vitamin C and other antioxidants in plant foods block the formation of these carcinogens in our stomach. That's why we can safely benefit from the nitrates in vegetables without the cancer risk. In fact some of the highest nitrate vegetables like arugula, kale, and collards are associated with decreased risk of kidney cancer. The more plants, it appears, the better.

Plant-based diets and fiber-rich diets are recommended to prevent cancer directly, as well as chronic conditions associated with kidney cancer, such as obesity, high blood pressure and diabetes. It's similar to sodium intake and kidney cancer. Sodium intake increases kidney disease risk, but that's not just because sodium intake increases blood pressure. It appears the salt is associated with increased cancer risk even independently of hypertension. What about plant-based diets? Turns out the protective association remains even in people who are not obese and have normal blood pressure. So overall, plant-based and fiber-rich diets appear to do both: decrease cancer risk directly and indirectly.

I briefly address kidney health in Preventing Kidney Failure Through Diet and Treating Kidney Failure Through Diet, but have a whole series of more in-depth videos dealing with various kidney issues.

More on the fascinating nitrate/nitrite story in my 17-part series about improving athletic performance with nitrate-rich vegetables such as beets and arugula. Here are a few short highlights:

More on carcinogens caused by cooking meat in videos like:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Image Credit: RDSVS / Flickr

Original Link

Preserving Male Reproductive Health With Diet

NF-June14.jpeg

In 1992 a controversial paper was published suggesting sperm counts have been dropping around the world over the last 50 years. However, this remains a matter of debate. It's notoriously difficult to determine sperm counts in the general population for obvious reasons. If you just go ask men for samples, less than 1 in 3 tend to agree to participate.

Finally though, a study of tens of thousands of men studied over a 17-year period was published. It indeed found a significant decline in sperm concentration, about a 30 percent drop, as well as a drop in the percentage of normal looking sperm. Most sperms looked normal in the 90's, but more recently that has dropped to less than half. This may constitute a serious public health warning.

Semen quality may actually be related to life expectancy. In a study of more than 40,000 men visiting a sperm lab during a 40-year period, they found a decrease in mortality was associated with an increase in semen quality, suggesting that semen quality may therefore be a fundamental biomarker of overall male health. Even when defective sperm are capable of fertilizing an egg, creating a child with abnormal sperm may have serious implications for that child's future health.

What role may diet play? I profiled a first-of-its-kind Harvard study suggesting that a small increase in saturated fat intake was associated with a substantially lower sperm count, but not all fat was bad. Higher intakes of omega-3's were associated with a more favorable sperm shape. This may help explain why researchers at UCLA were able to improve sperm vitality, movement, and shape by giving men about 18 walnuts a day for 12 weeks. Walnuts have more than just omega 3's, though. They also contain other important micronutrients. In a study of men aged 22 through 80, older men who ate diets containing lots of antioxidants and nutrients such as vitamin C had the genetic integrity of sperm of much younger men.

The antioxidants we eat not only end up in our semen, but are concentrated there. The amount of vitamin C ends up nearly ten times more concentrated in men's testicles than the rest of their bodies. Why? Because sperm are highly susceptible to damage induced by free radicals, and accumulating evidence suggests that this oxidative stress plays an important role in male infertility. So, more fruits and vegetables and perhaps less meat and dairy, but the Harvard data were considered preliminary. They studied fewer than 100 men, but it was the best we had... until now.

A much larger follow-up study, highlighted in my video, The Role of Diet in Declining Sperm Counts, found that the higher the saturated fat intake the lower the sperm count, up to a 65 percent reduction. These findings are of potentially great public interest because changes in diet over the past decades may be part of the explanation for the recently reported high frequency of subnormal human sperm counts. In any case, the current findings suggest that adapting dietary intake toward eating less saturated fat may be beneficial for both general and reproductive health.

Why is high dietary intake of saturated fat associated with reduced semen quality? What's the connection? Sex steroid hormones in meat, eggs, and dairy may help explain the link between saturated fat intake and declining sperm counts. That's the subject of my video, Dairy Estrogen and Male Fertility.

More on male infertility in my videos Fukushima and Radioactivity in Seafood and Male Fertility and Diet.

Diet also has a role to play in sexual dysfunction:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Julia Mariani / Flickr

Original Link

Which Nut Suppresses Cancer Cell Growth the Most?

NF-Dec22 Which Nut Fights Cancer Better?.jpg

People who eat nuts in their adolescence may have a better chance of fighting off breast cancer later in life, according to data from the Harvard Nurse's Study. A follow-up study involving the daughters of the nurses corroborated the findings. Those eating more peanut butter, nuts, beans, lentils, soybeans, or corn were found to have just a fraction of the risk for fibrocystic breast disease, which places one at higher risk of cancer. The protective effects were found to be strongest for those most at risk, such as those with a family history of breast cancer.

Another study out of the British Journal of Cancer found that even two handfuls of nuts a week may protect against pancreatic cancer, one of our most fatal malignancies.

Nuts are described as "nutritionally precious," which may explain some of the mechanisms by which nut components induce cancer cell death and inhibit cancer growth and spread in vitro. But which nuts work the best? In my video #1 Anticancer Vegetable, we learned that two classes of vegetables--the broccoli family vegetables and the garlic family vegetables--most effectively suppressed breast cancer cell growth. In Which Fruit Fights Cancer Better?, cranberries and lemons took the title.

What about nuts? In terms of antioxidant content, walnuts and pecans steal the show. Twenty-five walnuts have the antioxidant equivalent of eight grams of vitamin C (the vitamin C found in a hundred oranges).

But how do they do against cancer? In the video, Which Nut Fights Cancer Better?, you can see a graph of human cancer cell proliferation versus increasing concentrations of the ten most common nuts eaten in the United States. If you drip water on these cancer cells as a control, nothing happens. Hazelnuts, pistachios and Brazil nuts don't do much better. Pine nuts, cashews and macadamias start pulling away from the pack. Almonds appear twice as protective, halving cancer cell growth at only half the dose as pine nuts, cashews, and macadamias. Walnuts, pecans, and peanuts come out as the clear winners, causing a dramatic drop in cancer proliferation at just tiny doses.

More nuttiness:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Mariya Chorna / Flickr

Original Link

Where Do You Get Your Fiber?

NF-Sep29 Do Vegetarians get enough Protein?.jpg

Vegetarians and vegans are all too familiar with the question: Where do you get your protein?

Well, we can finally put to rest the question of whether vegetarians get enough protein thanks to a large study that compared the nutrient profiles of about 30,000 non-vegetarians to 20,000 vegetarians and about 5,000 vegans, 5,000 flexitarians (vegetarian most of the time), and 5,000 pescetarians (no meat except fish). The average requirement is 42 grams of protein a day. As you can see in the graph in the video, Do Vegetarians Get Enough Protein, meat eaters get way more than they need, and so does everyone else. Vegetarians and vegans average 70% more protein than the recommendation every day.

It's surprising that there's so much fuss about protein in this country when less than 3% of adults don't make the cut, presumably because they're on extreme calorie-restricted diets and aren't eating enough food period. But 97% of Americans get enough protein.

There is a nutrient, though, for which 97% of Americans are deficient. That nutrient is fiber.

Less than 3% of Americans get even the recommended minimum adequate intake of fiber. That's something we really have to work on.

On average, we get only about 15 grams a day. The minimum daily requirement is 31.5, so we get less than half the minimum. Men are particularly deficient. If we break down intake by age and gender, after studying the diets of 12,761 Americans, the percent of men between ages 14 and 50 getting the minimum adequate intake is zero. (The only nutrient Americans may be more deficient in than fiber is potassium. See 98% of American Diets Potassium Deficient.)

This deficit is stunning in that dietary fiber has been protectively associated in population studies with the risk of diabetes, metabolic syndrome, cardiovascular disease, obesity, and various cancers as well high cholesterol, blood pressure, and blood sugars. Therefore, it is not surprising that fiber is listed as a nutrient of concern reported by the Dietary Guidelines Advisory Committee. Protein is not.

One problem is that most people have no idea what's in their food; more than half of Americans think steak is a significant fiber source. By definition, fiber is only found in plants. There is no fiber in meat, dairy or eggs, and little or no fiber in junk food. Therein lies the problem. Americans should be eating more beans, vegetables, fruits, and whole grains--but how are they doing?

96% of Americans don't eat the minimum recommended daily amount of beans, 96% don't eat the measly minimum for greens, and 99% don't get enough whole grains. Nearly the entire U.S. population fails to eat enough whole plant foods.

Even semi-vegetarians make the fiber minimum, though. Those eating completely plant-based diets triple the average American intake. When closing the fiber gap, you'll want to do it gradually though, no more than about five extra grams a day each week until you can work your way up. But it's worth it. "Plant-derived diets tend to contribute significantly less fat, saturated fat, cholesterol, and food-borne pathogens, while at the same time offering more fiber, folate, vitamin C, and phytochemicals, all essential factors for disease prevention, optimal health, and well being." And the more whole plant foods the better. If we compare the nutritional quality of vegan versus vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diets, traditional healthy diet indexing systems consistently indicate that the most plant-based diet is the healthiest one.

For more on how S.A.D. the Standard American Diet is, see Nation's Diet in Crisis.

Americans eating meat-free diets average higher intakes of nearly every nutrient. See my video Nutrient-Dense Approach to Weight Management.

Isn't animal protein higher quality protein though? See my videos:

For more on protein, see: Plant Protein Preferable and Prostate Cancer Survival: The A/V Ratio.

And for a few on fiber:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Nathan Rupert / Flickr

Original Link