What a Single Fatty Meal Can Do to Our Arteries

Oct12 Fatty Meal copy.jpeg

The phenomenon of postprandial angina was described more than 200 years ago: chest pain that occurs after a meal, even if you're just sitting down and resting. This could be intuitively attributed to redistribution of blood flow away from the heart to the gut during digestion. However, such a mechanism could not be demonstrated experimentally.

The problem appears to be within the coronary arteries themselves. The clue came in 1955 when researchers found they could induce angina in people with heart disease just by having them drink fat. My video Fatty Meals May Impair Artery Function includes a fascinating graph of so-called lactescence, or milkiness, over time. It shows how their blood became increasingly milky with fat over the next five hours, and each of the ten attacks of angina was found to occur about four-and-a-half to five hours after the fatty meal, right when blood milkiness was at or near its peak. After a nonfat meal with the same bulk and calories, but made out of starch, sugar, and protein, no anginal pain was elicited in any of the patients.

To understand how the mere presence of fat in the blood can affect blood flow to the heart, we need to understand the endothelium, the inner lining of all of our blood vessels. Our arteries are not just rigid pipes; they are living, breathing organs that actively dilate or constrict, thinning or thickening the blood and releasing hormones, depending on what's needed. This is all controlled by the single inner layer, the endothelium, which makes it the body's largest endocrine (hormone-secreting) organ. When it's all gathered up, the endothelium weighs a total of three pounds and has a combined surface area of 700 square yards.

We used to think the endothelium was just an inert layer lining our vascular tree, but now we know better:

Researchers found that low-fat meals tend to improve endothelial function, whereas high-fat meals tend to worsen it. This goes for animal fat, as well as isolated plant fats, such as sunflower oil. But, maybe it's just the digestion of fat rather than the fat itself? Our body can detect the presence of fat in the digestive tract and release a special group of hormones and enzymes. Researchers tried feeding people fake fat and found that the real fat deprived the heart of blood while the fake fat didn't. Is our body really smart enough to tell the difference?

A follow-up study settled the issue. Researchers tried infusing fat directly into people's bloodstream through an IV to sneak it past your mouth and brain. Within hours, their arteries stiffened, significantly crippling their ability to relax and dilate normally. So it was the fat after all! This decrease in the ability to vasodilate coronary arteries after a fatty meal, just when you need it, could explain the phenomenon of after-meal angina in patients with known coronary artery disease.


This effect could certainly help explain the findings in Low Carb Diets and Coronary Blood Flow. My video Olive Oil and Artery Function addresses less refined fats like extra virgin olive oil,.

For more on angina, see the beginning of my 2014 annual talk--From Table to Able: Combating Disabling Diseases with Food--and How Not to Die from Heart Disease.

Another consequence of endothelial dysfunction is lack of blood flow to other organs. Check out Survival of the Firmest: Erectile Dysfunction and Death and Atkins Diet: Trouble Keeping It Up.

Fat in the bloodstream can also impair our ability to control blood sugar levels. Learn more with What Causes Insulin Resistance?, The Spillover Effect Links Obesity to Diabetes, and Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Finally, for more on how diet affects our arteries, check out Tea and Artery Function, Vinegar and Artery Function, and Plant-Based Diets and Artery Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

What a Single Fatty Meal Can Do to Our Arteries

Oct12 Fatty Meal copy.jpeg

The phenomenon of postprandial angina was described more than 200 years ago: chest pain that occurs after a meal, even if you're just sitting down and resting. This could be intuitively attributed to redistribution of blood flow away from the heart to the gut during digestion. However, such a mechanism could not be demonstrated experimentally.

The problem appears to be within the coronary arteries themselves. The clue came in 1955 when researchers found they could induce angina in people with heart disease just by having them drink fat. My video Fatty Meals May Impair Artery Function includes a fascinating graph of so-called lactescence, or milkiness, over time. It shows how their blood became increasingly milky with fat over the next five hours, and each of the ten attacks of angina was found to occur about four-and-a-half to five hours after the fatty meal, right when blood milkiness was at or near its peak. After a nonfat meal with the same bulk and calories, but made out of starch, sugar, and protein, no anginal pain was elicited in any of the patients.

To understand how the mere presence of fat in the blood can affect blood flow to the heart, we need to understand the endothelium, the inner lining of all of our blood vessels. Our arteries are not just rigid pipes; they are living, breathing organs that actively dilate or constrict, thinning or thickening the blood and releasing hormones, depending on what's needed. This is all controlled by the single inner layer, the endothelium, which makes it the body's largest endocrine (hormone-secreting) organ. When it's all gathered up, the endothelium weighs a total of three pounds and has a combined surface area of 700 square yards.

We used to think the endothelium was just an inert layer lining our vascular tree, but now we know better:

Researchers found that low-fat meals tend to improve endothelial function, whereas high-fat meals tend to worsen it. This goes for animal fat, as well as isolated plant fats, such as sunflower oil. But, maybe it's just the digestion of fat rather than the fat itself? Our body can detect the presence of fat in the digestive tract and release a special group of hormones and enzymes. Researchers tried feeding people fake fat and found that the real fat deprived the heart of blood while the fake fat didn't. Is our body really smart enough to tell the difference?

A follow-up study settled the issue. Researchers tried infusing fat directly into people's bloodstream through an IV to sneak it past your mouth and brain. Within hours, their arteries stiffened, significantly crippling their ability to relax and dilate normally. So it was the fat after all! This decrease in the ability to vasodilate coronary arteries after a fatty meal, just when you need it, could explain the phenomenon of after-meal angina in patients with known coronary artery disease.


This effect could certainly help explain the findings in Low Carb Diets and Coronary Blood Flow. My video Olive Oil and Artery Function addresses less refined fats like extra virgin olive oil,.

For more on angina, see the beginning of my 2014 annual talk--From Table to Able: Combating Disabling Diseases with Food--and How Not to Die from Heart Disease.

Another consequence of endothelial dysfunction is lack of blood flow to other organs. Check out Survival of the Firmest: Erectile Dysfunction and Death and Atkins Diet: Trouble Keeping It Up.

Fat in the bloodstream can also impair our ability to control blood sugar levels. Learn more with What Causes Insulin Resistance?, The Spillover Effect Links Obesity to Diabetes, and Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Finally, for more on how diet affects our arteries, check out Tea and Artery Function, Vinegar and Artery Function, and Plant-Based Diets and Artery Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Lipotoxicity: How Saturated Fat Raises Blood Sugar

NF-Nov24 Lipotoxicity How Saturated Fat Raises Blood Sugar copy.jpg

The reason those eating plant-based diets have less fat buildup in their muscle cells and less insulin resistance may be because saturated fats appear to impair blood sugar control the most.

The association between fat and insulin resistance is now widely accepted. Insulin resistance is due to so-called ectopic fat accumulation, the buildup of fat in places it's not supposed to be, like within our muscle cells. But not all fats affect the muscles the same. The type of fat, saturated vs. unsaturated, is critical. Saturated fats like palmitate, found mostly in meat, dairy and eggs, cause insulin resistance, but oleate, found mostly in nuts, olives and avocados may actually improve insulin sensitivity.

What makes saturated fat bad? Saturated fat causes more toxic breakdown products and mitochondrial dysfunction, and increases oxidative stress, free radicals and inflammation, establishing a vicious cycle of events in which saturated fat induces free radicals, causes dysfunction in the little power plants within our muscle cells (mitochondria), which then causes an increase in free radical production and an impairment of insulin signaling. I explain this in my video Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Fat cells filled with saturated fat activate an inflammatory response to a far greater extent. This increased inflammation from saturated fat has been demonstrated to raise insulin resistance through free radical production. Saturated fat also has been shown to have a direct effect on skeletal muscle insulin resistance. Accumulation of saturated fat increases the amount of diacyl-glycerol in the muscles, which has been demonstrated to have a potent effect on muscle insulin resistance. You can take muscle biopsies from people and correlate the saturated fat buildup in their muscles with insulin resistance.

While monounsaturated fats are more likely to be detoxified or safely stored away, saturated fats create those toxic breakdown products like ceramide that causes lipotoxicity. Lipo- meaning fat, as in liposuction. This fat toxicity in our muscles is a well-known concept in the explanation of trigger for insulin resistance.

I've talked about the role saturated and trans fats contribute to the progression of other diseases, like autoimmune diseases, cancer and heart disease, but they can also cause insulin resistance, the underlying cause of prediabetes and type 2 diabetes. In the human diet, saturated fats are derived from animal sources while trans fats originate in meat and milk in addition to partially hydrogenated and refined vegetable oils.

That's why experimentally shifting people from animal fats to plant fats can improve insulin sensitivity. In a study done by Swedish researchers, insulin sensitivity was impaired on the diet with added butterfat, but not on the diet with added olive fat.

We know prolonged exposure of our muscles to high levels of fat leads to severe insulin resistance, with saturated fats demonstrated to be the worst, but they don't just lead to inhibition of insulin signaling, the activation of inflammatory pathways and the increase in free radicals, they also cause an alteration in gene expression. This can lead to a suppression of key mitochondrial enzymes like carnitine palmitoyltransferase, which finally solves the mystery of why those eating vegetarian have a 60 percent higher expression of that fat burning enzyme. They're eating less saturated fat.

So do those eating plant-based diets have less fat clogging their muscles and less insulin resistance too? There hasn't been any data available regarding the insulin sensitivity or inside muscle cell fat of those eating vegan or vegetarian... until now. Researchers at the Imperial College of London compared the insulin resistance and muscle fat of vegans versus omnivores. Those eating plant-based diets have the unfair advantage of being much slimmer, so they found omnivores who were as skinny as vegans to see if plant-based diets had a direct benefit, as opposed to indirectly pulling fat out of the muscles by helping people lose weight in general.

They found significantly less fat trapped in the muscle cells of vegans compared to omnivores at the same body weight, better insulin sensitivity, better blood sugar levels, better insulin levels and, excitingly, significantly improved beta-cell function (the cells in the pancreas that make the insulin). They conclude that eating plant-based is not only expected to be cardioprotective, helping prevent our #1 killer, heart disease, but that plant-based diets are beta-cell protective as well, helping also to prevent our seventh leading cause of death, diabetes.

This is the third of a three-part series, starting with What Causes Insulin Resistance? and The Spillover Effect Links Obesity to Diabetes.

Even if saturated fat weren't associated with heart disease, its effects on pancreatic function and insulin resistance in the muscles would be enough to warrant avoiding it. Despite popular press accounts, saturated fat intake remains the primary modifiable determinant of LDL cholesterol, the #1 risk factor for our #1 killer-heart disease. See The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

How low should we shoot for in terms of saturated fat intake? As low as possible, according to the U.S. National Academies of Science Institute of Medicine: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Andrew Malone / Flickr

Original Link

Lipotoxicity: How Saturated Fat Raises Blood Sugar

NF-Nov24 Lipotoxicity How Saturated Fat Raises Blood Sugar copy.jpg

The reason those eating plant-based diets have less fat buildup in their muscle cells and less insulin resistance may be because saturated fats appear to impair blood sugar control the most.

The association between fat and insulin resistance is now widely accepted. Insulin resistance is due to so-called ectopic fat accumulation, the buildup of fat in places it's not supposed to be, like within our muscle cells. But not all fats affect the muscles the same. The type of fat, saturated vs. unsaturated, is critical. Saturated fats like palmitate, found mostly in meat, dairy and eggs, cause insulin resistance, but oleate, found mostly in nuts, olives and avocados may actually improve insulin sensitivity.

What makes saturated fat bad? Saturated fat causes more toxic breakdown products and mitochondrial dysfunction, and increases oxidative stress, free radicals and inflammation, establishing a vicious cycle of events in which saturated fat induces free radicals, causes dysfunction in the little power plants within our muscle cells (mitochondria), which then causes an increase in free radical production and an impairment of insulin signaling. I explain this in my video Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Fat cells filled with saturated fat activate an inflammatory response to a far greater extent. This increased inflammation from saturated fat has been demonstrated to raise insulin resistance through free radical production. Saturated fat also has been shown to have a direct effect on skeletal muscle insulin resistance. Accumulation of saturated fat increases the amount of diacyl-glycerol in the muscles, which has been demonstrated to have a potent effect on muscle insulin resistance. You can take muscle biopsies from people and correlate the saturated fat buildup in their muscles with insulin resistance.

While monounsaturated fats are more likely to be detoxified or safely stored away, saturated fats create those toxic breakdown products like ceramide that causes lipotoxicity. Lipo- meaning fat, as in liposuction. This fat toxicity in our muscles is a well-known concept in the explanation of trigger for insulin resistance.

I've talked about the role saturated and trans fats contribute to the progression of other diseases, like autoimmune diseases, cancer and heart disease, but they can also cause insulin resistance, the underlying cause of prediabetes and type 2 diabetes. In the human diet, saturated fats are derived from animal sources while trans fats originate in meat and milk in addition to partially hydrogenated and refined vegetable oils.

That's why experimentally shifting people from animal fats to plant fats can improve insulin sensitivity. In a study done by Swedish researchers, insulin sensitivity was impaired on the diet with added butterfat, but not on the diet with added olive fat.

We know prolonged exposure of our muscles to high levels of fat leads to severe insulin resistance, with saturated fats demonstrated to be the worst, but they don't just lead to inhibition of insulin signaling, the activation of inflammatory pathways and the increase in free radicals, they also cause an alteration in gene expression. This can lead to a suppression of key mitochondrial enzymes like carnitine palmitoyltransferase, which finally solves the mystery of why those eating vegetarian have a 60 percent higher expression of that fat burning enzyme. They're eating less saturated fat.

So do those eating plant-based diets have less fat clogging their muscles and less insulin resistance too? There hasn't been any data available regarding the insulin sensitivity or inside muscle cell fat of those eating vegan or vegetarian... until now. Researchers at the Imperial College of London compared the insulin resistance and muscle fat of vegans versus omnivores. Those eating plant-based diets have the unfair advantage of being much slimmer, so they found omnivores who were as skinny as vegans to see if plant-based diets had a direct benefit, as opposed to indirectly pulling fat out of the muscles by helping people lose weight in general.

They found significantly less fat trapped in the muscle cells of vegans compared to omnivores at the same body weight, better insulin sensitivity, better blood sugar levels, better insulin levels and, excitingly, significantly improved beta-cell function (the cells in the pancreas that make the insulin). They conclude that eating plant-based is not only expected to be cardioprotective, helping prevent our #1 killer, heart disease, but that plant-based diets are beta-cell protective as well, helping also to prevent our seventh leading cause of death, diabetes.

This is the third of a three-part series, starting with What Causes Insulin Resistance? and The Spillover Effect Links Obesity to Diabetes.

Even if saturated fat weren't associated with heart disease, its effects on pancreatic function and insulin resistance in the muscles would be enough to warrant avoiding it. Despite popular press accounts, saturated fat intake remains the primary modifiable determinant of LDL cholesterol, the #1 risk factor for our #1 killer-heart disease. See The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

How low should we shoot for in terms of saturated fat intake? As low as possible, according to the U.S. National Academies of Science Institute of Medicine: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Andrew Malone / Flickr

Original Link