Foods to Avoid to Help Prevent Diabetes

Oct 24 Foods to Avoid copy.jpeg

We've known that being overweight and obese are important risk factors for type 2 diabetes, but, until recently, not much attention has been paid to the role of specific foods. I discuss this issue in my video, Why Is Meat a Risk Factor for Diabetes?

A 2013 meta-analysis of all the cohorts looking at the connection between meat and diabetes found a significantly higher risk associated with total meat consumption--especially consumption of processed meat, particularly poultry. But why? There's a whole list of potential culprits in meat: saturated fat, animal fat, trans fats naturally found in meat, cholesterol, or animal protein. It could be the heme iron found in meat, which can lead to free radicals and iron-induced oxidative stress that may lead to chronic inflammation and type 2 diabetes, or advanced glycation end (AGE) products, which promote oxidative stress and inflammation. Food analyses show that the highest levels of these so-called glycotoxins are found in meat--particularly roasted, fried, or broiled meat, though any foods from animal sources (and even high fat and protein plant foods such as nuts) exposed to high dry temperatures can be potent sources of these pro-oxidant chemicals.

In another study, researchers fed diabetics glycotoxin-packed foods, like chicken, fish, and eggs, and their inflammatory markers--tumor necrosis factor, C-reactive protein, and vascular adhesion molecules--shot up. "Thus, in diabetes, environmental (dietary) AGEs promote inflammatory mediators, leading to tissue injury." The good news is that restriction of these kinds of foods may suppress these inflammatory effects. Appropriate measures to limit AGE intake, such as eliminating meat or using only steaming and boiling as methods for cooking it, "may greatly reduce the already heavy burden of these toxins in the diabetic patient." These glycotoxins may be the missing link between the increased consumption of animal fat and meats and the development of type 2 diabetes.

Since the 2013 meta-analysis was published, another study came out in which approximately 17,000 people were followed for about a dozen years. Researchers found an 8% increased risk for every 50 grams of daily meat consumption. Just one quarter of a chicken breast's worth of meat for the entire day may significantly increase the risk of diabetes. Yes, we know there are many possible culprits: the glycotoxins or trans fat in meat, saturated fat, or the heme iron (which could actually promote the formation of carcinogens called nitrosamines, though they could also just be produced in the cooking process itself). However, we did learn something new: There also appears to be a greater incidence of diabetes among those who handle meat for a living. Maybe there are some diabetes-causing zoonotic infectious agents--such as viruses--present in fresh cuts of meat, including poultry.

A "crucial factor underlying the diabetes epidemic" may be the overstimulation of the aging enzyme TOR pathway by excess food consumption--but not by the consumption of just any food: Animal proteins not only stimulate the cancer-promoting hormone insulin growth factor-1 but also provide high amounts of leucine, which stimulates TOR activation and appears to contribute to the burning out of the insulin-producing beta cells in the pancreas, contributing to type 2 diabetes. So, it's not just the high fat and added sugars that are implicated; critical attention must be paid to the daily intake of animal proteins as well.

According to a study, "[i]n general, lower leucine levels are only reached by restriction of animal proteins." To reach the leucine intake provided by dairy or meat, we'd have to eat 9 pounds of cabbage or 100 apples to take an extreme example. That just exemplifies the extreme differences in leucine amounts provided by a more standard diet in comparison with a more plant-based diet.

I reviewed the role endocrine-disrupting industrial pollutants in the food supply may play in a three-part video series: Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat. Clearly, the standard America diet and lifestyle contribute to the epidemic of diabetes and obesity, but the contribution of these industrial pollutants can no longer be ignored. We now have experimental evidence that exposure to industrial toxins alone induces weight gain and insulin resistance, and, therefore, may be an underappreciated cause of obesity and diabetes. Consider what's happening to our infants: Obesity in a six-month-old is obviously not related to diet or lack of exercise. They're now exposed to hundreds of chemicals from their moms, straight through the umbilical cord, some of which may be obesogenic (that is, obesity-generating).

The millions of pounds of chemicals and heavy metals released every year into our environment should make us all stop and think about how we live and the choices we make every day in the foods we eat. A 2014 review of the evidence on pollutants and diabetes noted that we can be exposed through toxic spills, but "most of the human exposure nowadays is from the ingestion of contaminated food as a result of bioaccumulation up the food chain. The main source (around 95%) of [persistent pollutant] intake is through dietary intake of animal fats."


For more on the information mentioned here, see the following videos that take a closer look at these major topics:

AGEs: Glycotoxins, Avoiding a Sugary Grave, and Reducing Glycotoxin Intake to Prevent Alzheimer's.

TOR: Why Do We Age?, Caloric Restriction vs. Animal Protein Restriction, Prevent Cancer From Going on TOR, and Saving Lives By Treating Acne With Diet

Viruses: Infectobesity: Adenovirus 36 and Childhood Obesity

Poultry workers: Poultry Exposure and Neurological Disease, Poultry Exposure Tied to Liver and Pancreatic Cancer, and Eating Outside Our Kingdom

Industrial pollutants: Obesity-Causing Pollutants in Food, Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat

The link between meat and diabetes may also be due to a lack of sufficient protective components of plants in the diet, which is discussed in my videos How May Plants Protect Against Diabetes?, Plant-Based Diets for Diabetes, Plant-Based Diets and Diabetes, and How Not to Die from Diabetes.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Foods to Avoid to Help Prevent Diabetes

Oct 24 Foods to Avoid copy.jpeg

We've known that being overweight and obese are important risk factors for type 2 diabetes, but, until recently, not much attention has been paid to the role of specific foods. I discuss this issue in my video, Why Is Meat a Risk Factor for Diabetes?

A 2013 meta-analysis of all the cohorts looking at the connection between meat and diabetes found a significantly higher risk associated with total meat consumption--especially consumption of processed meat, particularly poultry. But why? There's a whole list of potential culprits in meat: saturated fat, animal fat, trans fats naturally found in meat, cholesterol, or animal protein. It could be the heme iron found in meat, which can lead to free radicals and iron-induced oxidative stress that may lead to chronic inflammation and type 2 diabetes, or advanced glycation end (AGE) products, which promote oxidative stress and inflammation. Food analyses show that the highest levels of these so-called glycotoxins are found in meat--particularly roasted, fried, or broiled meat, though any foods from animal sources (and even high fat and protein plant foods such as nuts) exposed to high dry temperatures can be potent sources of these pro-oxidant chemicals.

In another study, researchers fed diabetics glycotoxin-packed foods, like chicken, fish, and eggs, and their inflammatory markers--tumor necrosis factor, C-reactive protein, and vascular adhesion molecules--shot up. "Thus, in diabetes, environmental (dietary) AGEs promote inflammatory mediators, leading to tissue injury." The good news is that restriction of these kinds of foods may suppress these inflammatory effects. Appropriate measures to limit AGE intake, such as eliminating meat or using only steaming and boiling as methods for cooking it, "may greatly reduce the already heavy burden of these toxins in the diabetic patient." These glycotoxins may be the missing link between the increased consumption of animal fat and meats and the development of type 2 diabetes.

Since the 2013 meta-analysis was published, another study came out in which approximately 17,000 people were followed for about a dozen years. Researchers found an 8% increased risk for every 50 grams of daily meat consumption. Just one quarter of a chicken breast's worth of meat for the entire day may significantly increase the risk of diabetes. Yes, we know there are many possible culprits: the glycotoxins or trans fat in meat, saturated fat, or the heme iron (which could actually promote the formation of carcinogens called nitrosamines, though they could also just be produced in the cooking process itself). However, we did learn something new: There also appears to be a greater incidence of diabetes among those who handle meat for a living. Maybe there are some diabetes-causing zoonotic infectious agents--such as viruses--present in fresh cuts of meat, including poultry.

A "crucial factor underlying the diabetes epidemic" may be the overstimulation of the aging enzyme TOR pathway by excess food consumption--but not by the consumption of just any food: Animal proteins not only stimulate the cancer-promoting hormone insulin growth factor-1 but also provide high amounts of leucine, which stimulates TOR activation and appears to contribute to the burning out of the insulin-producing beta cells in the pancreas, contributing to type 2 diabetes. So, it's not just the high fat and added sugars that are implicated; critical attention must be paid to the daily intake of animal proteins as well.

According to a study, "[i]n general, lower leucine levels are only reached by restriction of animal proteins." To reach the leucine intake provided by dairy or meat, we'd have to eat 9 pounds of cabbage or 100 apples to take an extreme example. That just exemplifies the extreme differences in leucine amounts provided by a more standard diet in comparison with a more plant-based diet.

I reviewed the role endocrine-disrupting industrial pollutants in the food supply may play in a three-part video series: Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat. Clearly, the standard America diet and lifestyle contribute to the epidemic of diabetes and obesity, but the contribution of these industrial pollutants can no longer be ignored. We now have experimental evidence that exposure to industrial toxins alone induces weight gain and insulin resistance, and, therefore, may be an underappreciated cause of obesity and diabetes. Consider what's happening to our infants: Obesity in a six-month-old is obviously not related to diet or lack of exercise. They're now exposed to hundreds of chemicals from their moms, straight through the umbilical cord, some of which may be obesogenic (that is, obesity-generating).

The millions of pounds of chemicals and heavy metals released every year into our environment should make us all stop and think about how we live and the choices we make every day in the foods we eat. A 2014 review of the evidence on pollutants and diabetes noted that we can be exposed through toxic spills, but "most of the human exposure nowadays is from the ingestion of contaminated food as a result of bioaccumulation up the food chain. The main source (around 95%) of [persistent pollutant] intake is through dietary intake of animal fats."


For more on the information mentioned here, see the following videos that take a closer look at these major topics:

AGEs: Glycotoxins, Avoiding a Sugary Grave, and Reducing Glycotoxin Intake to Prevent Alzheimer's.

TOR: Why Do We Age?, Caloric Restriction vs. Animal Protein Restriction, Prevent Cancer From Going on TOR, and Saving Lives By Treating Acne With Diet

Viruses: Infectobesity: Adenovirus 36 and Childhood Obesity

Poultry workers: Poultry Exposure and Neurological Disease, Poultry Exposure Tied to Liver and Pancreatic Cancer, and Eating Outside Our Kingdom

Industrial pollutants: Obesity-Causing Pollutants in Food, Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat

The link between meat and diabetes may also be due to a lack of sufficient protective components of plants in the diet, which is discussed in my videos How May Plants Protect Against Diabetes?, Plant-Based Diets for Diabetes, Plant-Based Diets and Diabetes, and How Not to Die from Diabetes.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Bile Binding Beets

NF-Jan21 Which Vegetable Binds Bile Best.001.jpeg

In my video Breast Cancer and Constipation, I discussed how fruits and veggies bind carcinogenic bile acids in our gut. Since bile acids are absorbed back into our systems, they may increase our risk of not only colon cancer but also other cancers as well. In light of this, researchers publishing in the journal, Nutrition Research, concluded that to "lower the risk of diet and lifestyle-related premature degenerative diseases and to advance human nutrition research, relative bile acid-binding potential of foods and fractions need to be evaluated."

They found that some vegetables bind bile acids better than others. We know that those eating more plant-based diets are at a lower risk of heart disease and cancer. This could partly be because of phytonutrients in plants that act as antioxidants and potent stimulators of natural detoxifying enzymes in our bodies. Veggies can also lower cholesterol and detoxify harmful metabolites, functions that can be predicted by their ability to bind bile acids.

A group of USDA researchers studying this topic discovered three important things. First, they found an over five-fold variability in bile acid binding among various vegetables that had similar fiber content, suggesting that bile acid binding is not just related to total dietary fiber content (as previously thought), but instead some combination of unique phytonutrients yet to be determined.

Second, they discovered that steaming significantly improves the bile acid binding of collards, kale, mustard greens, broccoli, peppers, cabbage, beets, eggplant, asparagus, carrots, green beans, and cauliflower, suggesting that in this way steaming vegetables may be more healthful than those consumed raw.

Finally, they ranked multiple vegetables for bile binding ability. Which vegetables kicked the most bile butt? (in my video, Which Vegetable Binds Bile Best?, you can see a visual comparison of bile binding ability.) Turnips turned up last. Then came cabbage, cauliflower, bell peppers, spinach, asparagus and green beans. Mustard greens and broccoli were better. Eggplant, carrots and Brussels sprouts basically tie for the #5 slot. Then collards at #4. Kale got the bronze, okra the silver, and beets the gold. Kale, surprisingly, got beet.

The researchers concluded that inclusion of all these vegetables in our daily diets should be encouraged. When consumed regularly, they concluded, these vegetables may lower the risk of premature degenerative diseases and improve public health.

More raw versus cooked comparisons in

Beets also have a number of other remarkable properties. Check out my video series on Doping with Beet Juice as well as Hearts Shouldn't Skip a Beet, and Whole Beets vs. Juice for Improving Athletic Performance.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Robert Couse-Baker / Flickr

Original Link

Is it Better to Bake, Boil, or Steam Sweet Potatoes?

NF-Nov19 best method for cooking sweet potatoes.jpg

I previously talked about the cancer fighting properties of sweet potatoes (See Anti-Cancer Potential of Sweet Potato Proteins) and what would happen if you centered your diet around them (The Okinawa Diet: Living to 100). It seems that the only potential downside to eating too many sweet potatoes is that you could get yellow palms (or nose as you can see in the video, The Best Way to Cook Sweet Potatoes), a harmless condition called "carotenemia." Caused by elevated levels of beta carotene in the blood, it was first noticed a century ago when carrots were introduce into infant diets. It's treated mostly by just reassuring parents that it's harmless, but if we don't want our child's nose to be yellow, we can decrease their beta carotene intake and in a few months it will be gone.

When picking out varieties at the supermarket, the intensity of the yellow or orange flesh color of the sweet potato is directly correlated to its nutritional content, so the more intense the better. Though if you really want intensity, sweet potato varieties don't just range from white to yellow and orange, but from pink to deep purple. The natural pigments that cause these colors may have special anticancer effects.

What is the best way to cook sweet potatoes? Boiling may actually retain most of the antioxidant power of sweet potatoes, compared to roasting and steaming. If we compare baking to boiling microscopically, boiling helps thin out the cell walls and gelatinize the starch, which may enhance the bioavailability of nutrients. At the same time, the glycemic index of boiled sweet potatoes was found to be about half that of baking or roasting, so boiled sweet potatoes give us less of a blood sugar spike.

Make sure to keep the skin on, though. The peel of a sweet potato has nearly ten times the antioxidant power as the flesh (an antioxidant capacity comparable to that of blueberries). However, the peel's nutrition really takes a hit when baked, which wipes out over two thirds of the antioxidants, whereas microwaving or boiling are comparatively much gentler. The same is true for the rest of the sweet potato. Baking can also cause an 80% drop in vitamin A levels, twice as much as boiling. Therefore, from a nutritional standpoint, boiling rather than baking should be recommended for cooking sweet potato.

Boiling may theoretically be best, but sweet potatoes are so incredibly healthy that the actual best way to prepare them is whichever way will get you to eat the most of them! The exception is deep frying, which can lead to the formation of acrylamide, a potential human carcinogen.

What about cooking methods for other vegetables? See my video Best Cooking Method.

Want more information about acrylamide, the potential crispy carb carcinogen? See my video Cancer Risk from French Fries. And for why deep frying in general might not be good, Deep Frying Toxins and Carcinogens in the Smell of Frying Bacon.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Avital Pinnick / Flickr

Original Link