The Best Diet to Prevent Kidney Stones

The Best Diet to Prevent Kidney Stones.jpeg

In my video How to Prevent Kidney Stones With Diet you can see what the jagged surface of a kidney stone looks like under a microscope. Imagine one of those scraping down your urinary canal! Kidney stones affect approximately 1 in 11 people in the United States. Twenty years ago it was only 1 in 20, representing a dramatic increase in the prevalence of the disease that started rising after World War II. Our first clue as to why was a study published in the 70's, which found a striking relationship between stone incidence and the consumption of animal protein. This was a population study, though, so it couldn't prove cause and effect.

That study inspired researchers in Britain to do an interventional study, adding animal protein to subjects' diets, such as an extra can of tuna fish a day, and measuring stone-forming risk factors in their urine. Participants' overall probability of forming stones increased 250% during those days they were eating that extra fish. And the so-called "high animal protein diet" was just enough to bring intake up to that of the average American. So Americans' intake of meat appears to markedly increase the risk of kidney stones.

What about consuming no meat at all? By the late 70's we knew that the only dietary factor consistently associated with kidney stones was animal protein. The higher the intake of animal protein, the more likely the individual was to not only get their first kidney stone, but to then suffer from subsequent multiple stones. This effect was not found for high protein intake in general, but specifically high animal protein intake. Conversely, a diet low in animal protein may dramatically reduce the overall probability of forming stones. This may explain the apparently low incidence of stones in vegetarian societies, so researchers advocated "a more vegetarian form of diet" as a means of reducing the risk.

It wasn't until 2014 that vegetarian kidney stone risk was studied in detail, though. Using hospital admissions data, researchers found that vegetarians were indeed at a lower risk of being hospitalized for kidney stones. It's not all or nothing, though. Among meat-eaters, increasing meat intake is associated with a higher risk of developing kidney stones, whereas a high intake of fresh fruit, fiber, and magnesium may reduce the risk.

Which animal protein is the worst? People who form kidney stones are commonly advised to restrict the intake of red meat to decrease stone risk, but what about chicken and fish? Despite compelling evidence that excessive animal protein consumption enhances the risk of stone formation, the effect of different sources of animal protein had not been explored until another study in 2014. Researchers compared the effects of salmon and cod, chicken breast meat, and burger and steak. In terms of uric acid production, they found that gram for gram fish may actually be worse. However, the overall effects were complex. Basically, stone formers should be counseled to limit the intake of all animal proteins, and not by just a little bit. Only those who markedly decrease their animal protein intake may expect to benefit.

Making our urine more alkaline can also help prevent the formation of kidney stones (and even dissolve and cure uric acid stones). How can you tell the pH of your urine? See my video Testing Your Diet with Pee & Purple Cabbage.

For more on kidney stones, see How to Treat Kidney Stones with Diet and Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?. And check out my overview of kidney health in How Not to Die from Kidney Disease.

Uric acid can also crystallize in our joints, but the good news is that there are natural treatments. See Gout Treatment with a Cherry on Top and Treating Gout with Cherry Juice.

Kidney stones are just one more reason that Plant Protein is Preferable.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Best Diet to Prevent Kidney Stones

The Best Diet to Prevent Kidney Stones.jpeg

In my video How to Prevent Kidney Stones With Diet you can see what the jagged surface of a kidney stone looks like under a microscope. Imagine one of those scraping down your urinary canal! Kidney stones affect approximately 1 in 11 people in the United States. Twenty years ago it was only 1 in 20, representing a dramatic increase in the prevalence of the disease that started rising after World War II. Our first clue as to why was a study published in the 70's, which found a striking relationship between stone incidence and the consumption of animal protein. This was a population study, though, so it couldn't prove cause and effect.

That study inspired researchers in Britain to do an interventional study, adding animal protein to subjects' diets, such as an extra can of tuna fish a day, and measuring stone-forming risk factors in their urine. Participants' overall probability of forming stones increased 250% during those days they were eating that extra fish. And the so-called "high animal protein diet" was just enough to bring intake up to that of the average American. So Americans' intake of meat appears to markedly increase the risk of kidney stones.

What about consuming no meat at all? By the late 70's we knew that the only dietary factor consistently associated with kidney stones was animal protein. The higher the intake of animal protein, the more likely the individual was to not only get their first kidney stone, but to then suffer from subsequent multiple stones. This effect was not found for high protein intake in general, but specifically high animal protein intake. Conversely, a diet low in animal protein may dramatically reduce the overall probability of forming stones. This may explain the apparently low incidence of stones in vegetarian societies, so researchers advocated "a more vegetarian form of diet" as a means of reducing the risk.

It wasn't until 2014 that vegetarian kidney stone risk was studied in detail, though. Using hospital admissions data, researchers found that vegetarians were indeed at a lower risk of being hospitalized for kidney stones. It's not all or nothing, though. Among meat-eaters, increasing meat intake is associated with a higher risk of developing kidney stones, whereas a high intake of fresh fruit, fiber, and magnesium may reduce the risk.

Which animal protein is the worst? People who form kidney stones are commonly advised to restrict the intake of red meat to decrease stone risk, but what about chicken and fish? Despite compelling evidence that excessive animal protein consumption enhances the risk of stone formation, the effect of different sources of animal protein had not been explored until another study in 2014. Researchers compared the effects of salmon and cod, chicken breast meat, and burger and steak. In terms of uric acid production, they found that gram for gram fish may actually be worse. However, the overall effects were complex. Basically, stone formers should be counseled to limit the intake of all animal proteins, and not by just a little bit. Only those who markedly decrease their animal protein intake may expect to benefit.

Making our urine more alkaline can also help prevent the formation of kidney stones (and even dissolve and cure uric acid stones). How can you tell the pH of your urine? See my video Testing Your Diet with Pee & Purple Cabbage.

For more on kidney stones, see How to Treat Kidney Stones with Diet and Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?. And check out my overview of kidney health in How Not to Die from Kidney Disease.

Uric acid can also crystallize in our joints, but the good news is that there are natural treatments. See Gout Treatment with a Cherry on Top and Treating Gout with Cherry Juice.

Kidney stones are just one more reason that Plant Protein is Preferable.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Paleo Diet May Undermine Benefit of CrossFit Exercise

NF-Sept6 Paleo Diets May Negate Benefits of Exercise.jpeg

Much of the low-carb and paleo reasoning revolves around insulin. To quote a paleo blogger, "carbohydrates increase insulin, the root of all evil when it comes to dieting and health." So the logic follows that because carbs increase insulin, we should stick mostly to meat, which is fat and protein with no carbs, so no increase in insulin, right?

Wrong.

We've known for half a century that if you give someone just a steak: no carbs, no sugar, no starch; their insulin goes up. Carbs make our insulin go up, but so does protein.

In 1997 an insulin index of foods was published, ranking 38 foods to determine which stimulates higher insulin levels. Researchers compared a large apple and all its sugar, a cup of oatmeal packed with carbs, a cup and a half of white flour pasta, a big bun-less burger with no carbs at all, to half of a salmon fillet. As you can see in the graph in my video Paleo Diets May Negate Benefits of Exercise, the meat produced the highest insulin levels.

Researchers only looked at beef and fish, but subsequent data showed that that there's no significant difference between the insulin spike from beef, chicken, or pork--they're all just as high. Thus, protein and fat rich foods may induce substantial insulin secretion. In fact, meat protein causes as much insulin release as pure sugar.

So, based on the insulin logic, if low-carbers and paleo folks really believed insulin to be the root of all evil, then they would be eating big bowls of spaghetti day in and day out before they would ever consume meat.

They are correct in believing that having hyperinsulinemia, high levels of insulin in the blood like type 2 diabetics have, is not a good thing, and may increase cancer risk. But if low-carb and paleo dieters stuck to their own insulin theory, then they would be out telling everyone to start eating plant-based. Vegetarians have significantly lower insulin levels even at the same weight as omnivores. This is true for ovo-lacto-vegetarians, lacto-vegetarians, and vegans. Meat-eaters have up to 50% higher insulin levels.

Researchers from the University of Memphis put a variety of people on a vegan diet (men, women, younger folks, older folks, skinny and fat) and their insulin levels dropped significantly within just three weeks. And then, just by adding egg whites back to their diet, their insulin production rose 60% within four days.

In a study out of MIT, researchers doubled participants' carbohydrate intake, and their insulin levels went down. Why? Because the researchers weren't feeding people jellybeans and sugar cookies, they were feeding people whole, plant foods, lots of whole grains, beans, fruits, and vegetables.

What if we put someone on a very-low carb diet, like an Atkins diet? Low carb advocates such as Dr. Westman assumed that it would lower insulin levels. Dr. Westman is the author of the new Atkins books, after Dr. Atkins died obese with, according to the medical examiner, a history of heart attack, congestive heart failure, and hypertension. But, Dr. Westman was wrong in his assumption. There are no significant drop in insulin levels on very low-carb diets. Instead, there is a significant rise in LDL cholesterol levels, the number one risk factor for our number one killer, heart disease.

Atkins is an easy target though. No matter how many "new" Atkins diets that come out, it's still old news. What about the paleo diet? The paleo movement gets a lot of things right. They tell people to ditch dairy and doughnuts, eat lots of fruits, nuts, and vegetables, and cut out a lot of processed junk food. But a new study published in the International Journal of Exercise Science is pretty concerning. Researchers took young healthy people, put them on a Paleolithic diet along with a CrossFit-based, high-intensity circuit training exercise program.

If you lose enough weight exercising, you can temporarily drop our cholesterol levels no matter what you eat. You can see that with stomach stapling surgery, tuberculosis, chemotherapy, a cocaine habit, etc. Just losing weight by any means can lower cholesterol, which makes the results of the Paleo/Crossfit study all the more troubling. After ten weeks of hardcore workouts and weight loss, the participants' LDL cholesterol still went up. And it was even worse for those who started out the healthiest. Those starting out with excellent LDL's (under 70), had a 20% elevation in LDL cholesterol, and their HDL dropped. Exercise is supposed to boost our good cholesterol, not lower it.

The paleo diet's deleterious impact on blood fats was not only significant, but substantial enough to counteract the improvements commonly seen with improved fitness and body composition. Exercise is supposed to make things better.

On the other hand, if we put people instead on a plant-based diet and a modest exercise program, mostly just walking-based; within three weeks their bad cholesterol can drop 20% and their insulin levels 30%, despite a 75-80% carbohydrate diet, whereas the paleo diets appeared to "negate the positive effects of exercise."

I touched on paleo diets before in Paleolithic Lessons, and I featured a guest blog on the subject: Will The Real Paleo Diet Please Stand Up?

but my favorite paleo videos are probably The Problem With the Paleo Diet Argument and Lose Two Pounds in One Sitting: Taking the Mioscenic Route.

I wrote a book on low carb diets in general (now available free full-text online) and touched on it in Atkins Diet: Trouble Keeping It Up and Low Carb Diets and Coronary Blood Flow.

And if you're thinking, but what about the size of the cholesterol, small and dense versus large and fluffy? Please see my video Does Cholesterol Size Matter?

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Image Credit: Vincent Lit / Flickr

Original Link

Is Insecticidal GMO Corn Safe?

NF-June28.jpeg

Recently the prominent science journal Nature editorialized that we are now swimming in information about genetically modified crops, but that much of the information is wrong--on both sides of the debate. "But a lot of this incorrect information is sophisticated, backed by legitimate-sounding research and written with certitude," adding that with GMOs, "a good gauge of a statement's fallacy is the conviction with which it is delivered."

To many in the scientific community, GMO concerns are dismissed as one big conspiracy theory. In fact, one item in a psychological test of belief in conspiracy theories asked people if they thought food companies would have the audacity to be dishonest about genetically modified food. The study concluded that many people were cynical and skeptical with regard to advertising tricks, as well as the tactics of organizations like banks and alcohol, drug, and tobacco companies. That doesn't sound like conspiracy theory to me; that sounds like business as usual.

We must remember there is a long legacy of scientific misconduct. Throw in a multi-billion dollar industry, and one can imagine how hard it is to get to the truth of the matter. There are social, environmental, economic, food security, and biodiversity arguments both pro and con about GMOs, but those are outside my area of expertise. I'm going to stick to food safety. And as a physician, I'm a very limited veterinarian--I only know one species (us!). So, I will skip the lab animal data and ask instead: What human data do we have about GMO safety?

One study "confirmed" that DNA from genetically modified crops can be transferred into humans who eat them, but that's not what the study found, just that plant DNA in general may be found in the human bloodstream, with no stipulations of harm (See Are GMOs Safe? The Case of Bt Corn).

Another study, however, did find a GMO crop protein in people. The "toxin" was detected in 93 percent of blood samples of pregnant women, 80 percent of umbilical cord blood samples, and 69 percent of samples from non-pregnant women. The toxin they're talking about is an insecticidal protein produced by Bt bacteria whose gene was inserted into the corn's DNA to create so-called Bt-corn, which has been incorporated into animal feed. If it's mainly in animal feed, how did it get into the bodies of women? They suggest it may be through exposure to contaminated meat.

Of course, why get GMO's second-hand when you can get them directly? The next great frontier is transgenic farm animals. A genetically modified salmon was first to vie for a spot at the dinner table. And then in 2010, transgenic cows, sheep, goats and pigs were created, genetically modified for increased muscle mass, based on the so-called mighty mouse model. Frankenfurters!

But back to children of the corn and their mothers. When they say it's a toxin, it's a toxin to corn worms, not necessarily to people. In fact I couldn't find any data linking BT toxin to human harm, which is a good thing since it's considered one of the few pesticides considered so non-toxic that it's sprayed on organic fruits and vegetables.

For more on on the public health implications of genetically modified crops, see:

I did a similar "controversial issue" video series on gluten. See:

For those interested in the genetic engineering of livestock, I published a few papers myself on the topic:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Jen Wilton / Flickr

Original Link

Do Dietary Toxins Contribute to Hand Tremors?

NF-Nov26 Essential Tremor and Diet.jpg

Essential tremor, affecting 1 in 25 adults over 40 and up to 1 in 5 of those in their 90s, is one of the most common neurological diseases. In addition to the potentially debilitating hand tremor, there can be other neuropsychiatric manifestations, including difficulty walking and various levels of cognitive impairment.

Might beta-carboline neurotoxins play a role in essential tremor? Harmane is one of the most potent of the tremor-producing neurotoxins. Expose people to harmane, and they develop tremors; take it away, and the tremors disappear. What if we're exposed long-term? A recent study at Columbia University, highlighted in my video, Essential Tremor and Diet, found that those with essential tremor have much higher levels of this toxin in their bloodstream compared to those without tremor. Furthermore, the higher the harmane levels, the worse the tremor. The highest levels are found in those who have both essential tremor and cancer, suggesting harmane may be playing a role in both diseases.

How did folks get exposed to these chemicals? Primarily through meat: beef, pork, fish, and especially chicken. So if this potent, tremor-producing neurotoxin is concentrated in cooked muscle foods, is meat consumption associated with a higher risk of essential tremor? Another Columbia University study found that men who ate the most meat had 21 times the odds of essential tremor. To put that in context, if we go back to the original studies on smoking and lung cancer, we see that smoking was only linked to about 14 times the odds, not 21.

Blood levels of this neurotoxin may shoot up within five minutes of eating meat. Five minutes? It's not even digested by then. This rapid uptake is indicative of significant absorption directly through the mouth straight into the bloodstream, bypassing the stomach and, most importantly, bypassing the detoxifying enzymes of the liver. This may lead to higher exposure levels in peripheral organs, like the brain.

Due to its high fat solubility, harmane accumulates in brain tissue, and, using a fancy brain scan called "proton magnetic resonance spectroscopic imaging," higher harmane levels have been linked to greater metabolic dysfunction in the brains of essential tremor sufferers.

Harmane is also found in certain heated plants, like tobacco. A broiled chicken breast has about 13 micrograms of harmane, and cigarettes average about one microgram, so a half pack of cigarettes could expose us to almost as much of this neurotoxin as a serving of chicken. Harman is created when tobacco is burned, and also when coffee beans are roasted. However, coffee intake has not been tied to increased risk (and neither has tobacco for that matter), so it may be something else in meat that's to blame for the 2,000 percent increase in odds for this disabling brain disease.

I also have a few videos about the other major tremor condition, Parkinson's Disease: Preventing Parkinson's Disease with Diet and Treating Parkinson's Disease with Diet

Other compounds created in cooked meats may also have implications for cancer risk:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Gennaro D'Orio / Flickr

Original Link

Salmon May Be the Greatest Source of Dietary Pollutants

NF-Aug6 Pollutants in Salmon and Our Own Fat.jpg

In my video Diabetes and Dioxins, I explored a nationwide study that found a strong dose-response relationship between industrial toxins and diabetes. Since then, Harvard researchers have reported a link between persistent pollutants like hexachlorobenzene and diabetes in their Nurse's Health Study (See Food Sources of Perfluerochemicals). This is supported by an analysis they did of six other studies published since 2006 that showed the same thing. The Harvard researchers conclude that "past accumulation and continued exposure to these persistent pollutants may be a potent risk factor for developing diabetes."

Where is hexachlorobenzene found? In a U.S. supermarket survey, salmon and sardines were most heavily tainted with hexachlorobenzene, with salmon "the most contaminated food of all." Farmed salmon specifically is perhaps the greatest source of dietary pollutants, averaging nearly ten times the PCB load of wild-caught salmon.

Wait, isn't there a flaw in this argument? Since many of these chemicals were banned in the 70's, the levels inside people have been going down, whereas the rates of diabetes have been shooting straight up. Therefore, how could pollutant exposure be causing diabetes? This puzzle may be explained by our epidemic of obesity. The nationwide study found that the association between these toxins and diabetes was much stronger among obese subjects than among lean subjects. As people get fatter, the retention and toxicity of pollutants related to the risk of diabetes may increase.

So we're not just exposed by eating the fat of other animals; our own fat can be a continuous source of internal exposure because these persistent pollutants are slowly but continuously released from our fat stores into our circulation.

They don't call them "persistent pollutants" for nothing. These chemicals have such a long half-life that people consuming regular (even just monthly) meals of farmed salmon might end up retaining these chemicals in their bodies for 50 to 75 years.

Hexachlorobenzene in fish has been tied to diabetes; what about the mercury? A 1995 study highlighted in my video, Pollutants in Salmon and Our Own Fat, out of Japan found that diabetics do seem to have higher mercury levels in their body. Mercury alone does not seem to increase diabetes risk, though. It may be the simultaneous exposure to both dioxins and mercury that increases risk, so the safety limits for dioxins and mercury individually may underestimate the risk when they're consumed together in seafood.

So while the pharmaceutical industry works on coming up with drugs to help mediate the impact of these pollutants, a better strategy might be to not get so polluted in the first place.

Unfortunately, because we've so contaminated our world, we can't escape exposure completely. You have to eat something. Some foods are more contaminated than others, though. Exposure to these pollutants comes primarily from the consumption of animal fat, with the highest levels found in fatty fish like salmon. Farmed Atlantic salmon may be the single largest source of these pollutants, and that's the kind of salmon we most commonly find in supermarkets and restaurants.

We hear about advisories warning pregnant women to avoid the consumption of food containing elevated levels of pollutants and mercury, but as a public health journal article points out, since these toxins bio-accumulate in the body for many years "restricting the exposure to these pollutants only during pregnancy would not protect the fetus or future generations against the harmful effects of these hazardous chemicals."

For the existing links between seafood and diabetes risk, see Fish and Diabetes and I explored this concept of our own body fat as a reservoir for disease-causing pollutants in Diabetes and Dioxins.

More on hexachlorobenzene in my video Food Sources of Perfluorochemicals.

Our body has a tougher time getting rid of some toxins than others:

The best way to detox is to stop toxing in the first place.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: Sharon Mollerus / Flickr

Original Link

How to Reduce Exposure to Alkylphenols Through Your Diet

NF-Apr28 Dietary Sources of Alkylphenol Endocrine Disruptors.jpg

Alkylphenols are industrial chemicals that are found in hair products, spermicides, cleaning products and detergents. They are considered endocrine disruptors. For more information on alkylphenols, check out my video Alkylphenol Endocrine Disruptors and Allergies.

Concern about alkylphenols first surfaced decades ago when a group at Tufts observed an excessive proliferation of human breast cancer cells in certain types of plastic containers, something that would normally only be seen if the cells were exposed to some type of estrogen. They identified an alkylphenol leaching from the plastic as the culprit, having "estrogen-like properties when tested in the human breast tumor cells." Excessive proliferation of human breast cancer cells is never good, so countries in Europe started banning and restricting the use of these chemicals. However, the U.S. EPA has been slow to respond.

A half million tons of alkylphenols continue to spew out into the environment every year, so much so that now that they come down in the rain and then accumulate up the food chain.

One study, highlighted in my video, Dietary Sources of Alkylphenol Endocrine Disruptors, examined the Japanese food supply to find out which foods had these potentially allergy-exacerbating endocrine disruptors. The researchers found that chicken and fish had the highest levels. Water animals and birds concentrate these compounds to levels several thousands of times greater than those in the environment because these are fat-soluble chemicals. "Therefore, they can easily contaminate foods of animal origin, which are thought to represent the most important source of human exposure to many organic pollutants," not just the alkylphenols. Another research group also found that fish was the worst.

Which kind of fish? Anchovies, mackerel, salmon and cod seem to have the highest levels. In fact, salmon was the only food found contaminated with nonylphenol diethoxylate, which is even more potent than regular nonylphenol. The levels of contamination in fish were at the concentrations that start to make breast cancer cells go crazy in vitro.

These findings are consistent with the fact that seafood consumption has been associated with severe asthma, current and severe rhinoconjunctivitis, (seasonal pollen allergies), and current and severe eczema (an allergic-type disease of the skin) in adolescent populations around the globe.

If these synthetic xenoestrogens are playing a role, what about natural phytoestrogens, such as those found in soy foods? It turns out that in patients with asthma, consumption of a diet with moderate to high amounts of soy phytoestrogens is associated with better lung function and better asthma control. If anything then, it's these chemical pollutants, which come down in the rain, contaminate the soil, the plants, and then concentrate up the food chain in the fat of animals. We're now the animals at the top of the food chain, like the polar bear or bald eagle, building up higher levels of these synthetic xenoestrogens.

Thankfully, there aren't many cannibals around anymore. However, there is one group that continues to feed off human tissues--babies (See The Wrong Way to Detox). Alkylphenols have been found to concentrate in human breast milk, particularly in women who eat fish. The highest levels of these endocrine-disrupting pollutants were recorded in milk samples from mothers who said they ate fish at least twice a week, consistent with the fact that seafood consumption represents an important source of alkylphenol intake. Even these "slightly elevated levels of endocrine disruptors in the milk of mothers with a seafood-rich diet may be associated with adverse effects on neurological development, fetal and postnatal growth, and memory functions on breastfed infants, because these contaminants may interfere with the endocrine [hormonal] system."

Since these toxins concentrate in fat, the highest concentrations may be found in straight animal fat, such as chicken fat, lard, tallow, or fish oil. Consumption of fish oil capsules and processed fish products has been associated with alkylphenol concentration in mothers' milk, again due to bioaccumulation up the food chain. And then we recycle the leftover remains of farm animals into farm animal feed, so the levels can get higher and higher in animal products.

As one commentator noted, while these pollutants do contaminate human milk, they also contaminate cow's milk--humans and cows live in the same polluted world. In fact, infant formula was found to be over five times more contaminated, so breast is still best, absolutely. But these kinds of studies are important in order to provide good suggestions for food choices to nursing mothers to prevent excess exposure to these pollutants in their infants.

We can kind of cut out the middlefish and move lower down the food chain in hopes of decreasing our exposure to industrial toxins.

Endocrine disruptors have also been linked to conditions such as male infertility (Male Fertility and Diet and Xenoestrogens and Sperm Counts) and early onset of puberty (Protein, Puberty, and Pollutants and Xenoestrogens and Early Puberty).

What other industrial pollutants build up in the aquatic fish chain? See, for example:

Farmed Fish vs. Wild Caught. Which is worse?

How Long to Detox from Fish Before Pregnancy? If it's too late, How Fast Can Children Detoxify from PCBs?

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: Andrea Pokrzywinski / Flickr

Original Link

What is ‘Meat Glue’?

NF-Apr16 What is

The so-called "meat glue enzyme" transglutaminase is used by the meat industry to add value to meat by gluing together smaller scraps into a larger chunk. And it's not just used to make fake steak--the American Meat Institute estimates that it's used in about "eight million pounds of meat every year in the United States." Transglutaminase can be used to cross-link pieces of any type of meat, fish, or meat product, and hence can be used to produce large chunks of virtually intact looking meat or fish out of small meat or fish cuttings. When researchers actually tested for transglutaminase in 20 samples of meat from the supermarket, they found meat glue in only two of the samples--in a sample of salmon and a sample of turkey (See Is Meat Glue Safe?)

Where does meat glue come from? For decades, the sole commercial source of transglutaminase was from the livers of guinea pigs. Now it can be sourced much cheaper. However, the future of meat glue remains uncertain because of "communication difficulties."

One of the reasons the industry uses meat glue enzymes is because, "restructured meat can be made from underutilized portions of the carcasses." For example, you can get away with adding up to 5% tendons to beef, and some people can't tell the difference.

This has raised food safety concerns. There is a "risk that otherwise discarded leftovers of questionable microbial quality could find their way into the reconstituted meat."

One can actually take a microscope and see introduced E. coli O157:H7 along the glue lines where meat pieces were enzymatically attached, which shows that the restructuring process can translocate fecal matter surface contamination into the interior of the meat.

Furthermore, people who have problems with gluten may develop problems when ingesting meat treated with the meat glue enzyme, since it functions as an auto-antigen capable of inducing an autoimmune reaction. (Many gluten reactions may not actually be to gluten, though. See my video Is Gluten Sensitivity Real? and most need not worry about gluten sensitivity. See my video Is Gluten Bad For You?).

Some meat additives, however, may actually improve food safety. See Meat Additives to Diminish Toxicity, Viral Meat Spray and Maggot Meat Spray.

More on E. coli O157:H7 in my video, Meat May Exceed Daily Allowance of Irony. For those interested in the politics of this "Jack-in-the-Box" strain, see my blogs E. coli O145 Ban Opposed by Meat Industry and Supreme Court case: meat industry sues to keep downed animals in food supply. From a population perspective, the E. coli in chicken is more of a concern. See my video Avoiding Chicken To Avoid Bladder Infections.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: Wheeler Cowperthwaite / Flickr

Original Link

Is Liquid Smoke Safe?

NF-Apr14 Does Liquid Smoke Cause Cancer.jpg

We know smoke inhalation isn't good for us, but what about smoke ingestion? Decades ago, smoke flavorings were tested to see if they caused DNA mutations in bacteria--the tests came up negative. Even as more and more smoke flavoring was added, the DNA mutation rate remained about the same.

But the fact that something is not mutagenic in bacteria may have little predictive value for its effect on human cells. A group at MIT tested a hickory smoke flavoring they bought at the store against two types of human white blood cells. Unlike the bacteria, the mutation rate shot up as more and more liquid smoke was added. But, "there is no evidence that mutagenic activity in a particular human cell line is more closely related to human health risk than is mutagenic activity in bacteria." In other words: just because liquid smoke causes DNA mutations to human cells in a petri dish, doesn't mean that it does the same thing within the human body.

A good approach may be to just analyze liquid smoke for known carcinogens, chemicals that we know cause cancer.

Damaging DNA is just one of many ways chemicals can be toxic to cells. A decade later researchers tested to see what effect liquid smoke had on overall cell viability. If you drip water on cells, nothing happens, they keep powering away at around 100% survival, but drip on more and more wood fire smoke, and you start killing some of the cells off. Cigarette smoke is more toxic, but three out of four of the brands of liquid smoke they bought at the supermarket killed off even more cells, leading them to conclude that the cytotoxic potential of some commercial smoke flavorings is greater than that of liquid cigarette smoke, a finding they no doubt celebrated given that the researchers were paid employees of the R. J. Reynolds Tobacco Co.

Unfortunately they didn't name names of the offending brands. That's one of the reasons I was so excited about a new study, where they tested--and named--15 different brands of liquid smoke. This maximum "response" they were measuring was p53 activation.

P53 is a protein we make that binds to our DNA, you can see this illustrated in my video, Is Liquid Smoke Flavoring Carcinogenic?. It activates our DNA repair enzymes. So a big p53 response may be indicative of a lot of DNA damage,and a few of the liquid smoke flavorings activated p53 almost as much as a chemotherapy drug like etoposide, whose whole purpose is to break DNA strands.

Other flavorings didn't seem as bad, though there was a hickory smoke powder that ranked pretty high, as did the fish sauce, though smoked paprika didn't register at all.

The p53-activating property in liquid smoke was eliminated by standard baking conditions (350°F for 1h), so if you're baking something with liquid smoke for long enough, it should eliminate this effect, though just boiling--even for an hour, or slow cooking doesn't appear to work.

They conclude "If the DNA-damaging activities of liquid smoke were thought to be deleterious, it might be possible to replace liquid smoke with other safer, smoky substances." Why do they say if thought to be deleterious? That's because they're not really measuring DNA damage, they're measuring p53 activation, and that's not necessarily a bad thing.

P53 is considered "Guardian of our Genome," guardian of our DNA. It's considered a tumor suppressor gene, so if something boosts its activity is that good or bad? It's like the broccoli story. Cruciferous vegetables dramatically boost our liver's detoxifying enzymes. Is this because our body sees broccoli as toxic and is trying to get rid of it quicker? Either way, the end result is good, lower cancer risk.

It's a biological phenomenon known as hormesis - that which doesn't kill us may make us stronger. Like exercise is a stress on the body, but in the right amount can make us healthier in the long run. So, for example, teas and coffees caused p53 activation as well, but their consumption is associated with lower cancer risk. So it's hard to know what to make of this p53 data. Due to the limitations of the available tests it's hard to calculate the genotoxic potential of liquid smoke, or any other food for that matter. A better approach may be to just analyze liquid smoke for known carcinogens, chemicals that we know cause cancer.

This was first attempted back in 1971. One of the seven liquid smoke flavors researchers tested contained one polycyclic aromatic hydrocarbon known to be cancer-causing, but there's a bunch of similar carcinogens researchers didn't test for. A later study, however, tested across the board, looking specifically at five different carcinogens in retail liquid smoke seasonings.

The recommended daily upper safety limit for these carcinogens is 47. Hickory smoke flavoring has only 0.8 per teaspoon, so we'd have to drink three bottles a day to bump up against the limit. And mesquite liquid smoke has only 1.1.

It turns out that most of the carcinogens in smoke are fat soluble, so when we make a water-based solution, like liquid smoke, we capture the smoke flavor compounds without capturing most of the smoke cancer compounds. The only time we need to really worry is when eating smoked foods--foods directly exposed to actual smoke. For example, smoked ham has 21.3 per serving, and smoked turkey breast has 26.7 per serving. One sandwich and we may be halfway to the limit, and one serving of barbequed chicken takes us over the top. Eating less than a single drumstick and we nearly double our daily allotment of these carcinogens. Nothing, however, is as bad as fish. Smoked herring? 140 per serving. And smoked salmon? One bagel with lox could take us ten times over the limit.

I've touched on those cooked meat carcinogens before. In Estrogenic Cooked Meat Carcinogens I explored the role of these cooked meat chemicals in tumor growth. PhIP: The Three Strikes Breast Carcinogen explored their role in cancer invasion. Reducing Cancer Risk In Meateaters offered some mediation strategies. Heterocyclic Amines in Eggs, Cheese, and Creatine? showed how even vegetarians may be at risk and Cancer, Interrupted: Green Tea and Cancer, Interrupted: Garlic & Flavonoids explored some counter measures.

Some smoke compounds may be a concern even if we don't eat them. See Meat Fumes: Dietary Secondhand Smoke. Even the smell of frying bacon may be carcinogenic: Carcinogens in the Smell of Frying Bacon.

Some plant foods exposed to high temperatures may also present a concern. See Is Yerba Mate Tea Bad for You? and Acrylamide in French Fries. What about Carcinogens in Roasted Coffee?

The broccoli liver enzyme boost story is covered in The Best Detox.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: eric forsberg / Flickr

Original Link

How Seafood Can Impact Brain Development

NF-Oct30 How Seafood Can Impact Brain Development.jpg

In my video Fish Intake Associated With Brain Shrinkage, I discussed evidence suggesting that mercury exposure through fish intake during pregnancy may decrease the size of the newborn's brain. However, just because fish-eating mothers may give birth to children with smaller brains doesn't necessarily mean their children will grow up with neurological defects. In the video, Mercury vs. Omega-3s for Brain Development, you can see real-time functional MRI scans of teens whose moms ate a lot of seafood when pregnant. Because these kinds of scans can measure brain activity, as opposed to just brain size, we can more accurately determine if exposure to mercury and PCBs affected these kids. You can see an MRI of what a normal brain looks like when you flash a light in someone's eyes, but the MRI is significantly different for the mercury and PCB exposed brains, suggesting toxicant related damage to the visual centers in brain. (For more on the effect of mercury on teens, see Nerves of Mercury). Fish consumption may also increase the risk of our children being born with epilepsy.

So does maternal fish consumption have an effect on how smart our kids turn out? The DHA in fish--a long chain omega 3 fatty acid--is good for brain development, but mercury is bad for brain development. So a group of researchers looked at 33 different fish species to see what the net effect of these compounds would have on children's IQ. For most fish species, they found that "the adverse effect of mercury on the IQ scores of children exceeded the beneficial effects of DHA." In fact, so much brainpower may be lost from fish consumption that the United States may actually lose $5 billion in economic productivity every year.

For example, if pregnant women ate tuna every day, the DHA would add a few IQ points. But the mercury in that very same tuna would cause so much brain damage that the overall effect of eating tuna while pregnant would be negative, wiping out an average of eight IQ points. The only two fish that were more brain-damaging than tuna were pike and swordfish.

At the other end of the spectrum, the brain boosting effect of DHA may trump the brain damaging effects of mercury in salmon by a little less than one IQ point. Unfortunately, IQ only takes into consideration the cognitive damage caused by mercury, not the adverse effects on motor function and attention and behavior deficits. We think that attention span may be particularly vulnerable to developmental mercury exposure, probably due to damage to the frontal lobes of the brain.

And the IQ study didn't take into account the relatively high levels of PCBs in salmon and the accompanying concerns about cancer risk. Sustainability concerns are another wrinkle, as farm-raised salmon are considered a "fish to avoid." While king mackerel is considered a best choice for sustainability, the mercury levels are so high as to warrant avoiding consumption--exceeding both the FDA and EPA action levels for mercury contamination. But why risk any loss in intelligence at all when pregnant women can get all the DHA they want from microalgae supplements without any of the contaminants? We can then get the brain boost without the brain damage.

More on PCBs in:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Images thanks to Dion van Huyssteen / Flickr

Original Link