What a Single Fatty Meal Can Do to Our Arteries

Oct12 Fatty Meal copy.jpeg

The phenomenon of postprandial angina was described more than 200 years ago: chest pain that occurs after a meal, even if you're just sitting down and resting. This could be intuitively attributed to redistribution of blood flow away from the heart to the gut during digestion. However, such a mechanism could not be demonstrated experimentally.

The problem appears to be within the coronary arteries themselves. The clue came in 1955 when researchers found they could induce angina in people with heart disease just by having them drink fat. My video Fatty Meals May Impair Artery Function includes a fascinating graph of so-called lactescence, or milkiness, over time. It shows how their blood became increasingly milky with fat over the next five hours, and each of the ten attacks of angina was found to occur about four-and-a-half to five hours after the fatty meal, right when blood milkiness was at or near its peak. After a nonfat meal with the same bulk and calories, but made out of starch, sugar, and protein, no anginal pain was elicited in any of the patients.

To understand how the mere presence of fat in the blood can affect blood flow to the heart, we need to understand the endothelium, the inner lining of all of our blood vessels. Our arteries are not just rigid pipes; they are living, breathing organs that actively dilate or constrict, thinning or thickening the blood and releasing hormones, depending on what's needed. This is all controlled by the single inner layer, the endothelium, which makes it the body's largest endocrine (hormone-secreting) organ. When it's all gathered up, the endothelium weighs a total of three pounds and has a combined surface area of 700 square yards.

We used to think the endothelium was just an inert layer lining our vascular tree, but now we know better:

Researchers found that low-fat meals tend to improve endothelial function, whereas high-fat meals tend to worsen it. This goes for animal fat, as well as isolated plant fats, such as sunflower oil. But, maybe it's just the digestion of fat rather than the fat itself? Our body can detect the presence of fat in the digestive tract and release a special group of hormones and enzymes. Researchers tried feeding people fake fat and found that the real fat deprived the heart of blood while the fake fat didn't. Is our body really smart enough to tell the difference?

A follow-up study settled the issue. Researchers tried infusing fat directly into people's bloodstream through an IV to sneak it past your mouth and brain. Within hours, their arteries stiffened, significantly crippling their ability to relax and dilate normally. So it was the fat after all! This decrease in the ability to vasodilate coronary arteries after a fatty meal, just when you need it, could explain the phenomenon of after-meal angina in patients with known coronary artery disease.


This effect could certainly help explain the findings in Low Carb Diets and Coronary Blood Flow. My video Olive Oil and Artery Function addresses less refined fats like extra virgin olive oil,.

For more on angina, see the beginning of my 2014 annual talk--From Table to Able: Combating Disabling Diseases with Food--and How Not to Die from Heart Disease.

Another consequence of endothelial dysfunction is lack of blood flow to other organs. Check out Survival of the Firmest: Erectile Dysfunction and Death and Atkins Diet: Trouble Keeping It Up.

Fat in the bloodstream can also impair our ability to control blood sugar levels. Learn more with What Causes Insulin Resistance?, The Spillover Effect Links Obesity to Diabetes, and Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Finally, for more on how diet affects our arteries, check out Tea and Artery Function, Vinegar and Artery Function, and Plant-Based Diets and Artery Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

What a Single Fatty Meal Can Do to Our Arteries

Oct12 Fatty Meal copy.jpeg

The phenomenon of postprandial angina was described more than 200 years ago: chest pain that occurs after a meal, even if you're just sitting down and resting. This could be intuitively attributed to redistribution of blood flow away from the heart to the gut during digestion. However, such a mechanism could not be demonstrated experimentally.

The problem appears to be within the coronary arteries themselves. The clue came in 1955 when researchers found they could induce angina in people with heart disease just by having them drink fat. My video Fatty Meals May Impair Artery Function includes a fascinating graph of so-called lactescence, or milkiness, over time. It shows how their blood became increasingly milky with fat over the next five hours, and each of the ten attacks of angina was found to occur about four-and-a-half to five hours after the fatty meal, right when blood milkiness was at or near its peak. After a nonfat meal with the same bulk and calories, but made out of starch, sugar, and protein, no anginal pain was elicited in any of the patients.

To understand how the mere presence of fat in the blood can affect blood flow to the heart, we need to understand the endothelium, the inner lining of all of our blood vessels. Our arteries are not just rigid pipes; they are living, breathing organs that actively dilate or constrict, thinning or thickening the blood and releasing hormones, depending on what's needed. This is all controlled by the single inner layer, the endothelium, which makes it the body's largest endocrine (hormone-secreting) organ. When it's all gathered up, the endothelium weighs a total of three pounds and has a combined surface area of 700 square yards.

We used to think the endothelium was just an inert layer lining our vascular tree, but now we know better:

Researchers found that low-fat meals tend to improve endothelial function, whereas high-fat meals tend to worsen it. This goes for animal fat, as well as isolated plant fats, such as sunflower oil. But, maybe it's just the digestion of fat rather than the fat itself? Our body can detect the presence of fat in the digestive tract and release a special group of hormones and enzymes. Researchers tried feeding people fake fat and found that the real fat deprived the heart of blood while the fake fat didn't. Is our body really smart enough to tell the difference?

A follow-up study settled the issue. Researchers tried infusing fat directly into people's bloodstream through an IV to sneak it past your mouth and brain. Within hours, their arteries stiffened, significantly crippling their ability to relax and dilate normally. So it was the fat after all! This decrease in the ability to vasodilate coronary arteries after a fatty meal, just when you need it, could explain the phenomenon of after-meal angina in patients with known coronary artery disease.


This effect could certainly help explain the findings in Low Carb Diets and Coronary Blood Flow. My video Olive Oil and Artery Function addresses less refined fats like extra virgin olive oil,.

For more on angina, see the beginning of my 2014 annual talk--From Table to Able: Combating Disabling Diseases with Food--and How Not to Die from Heart Disease.

Another consequence of endothelial dysfunction is lack of blood flow to other organs. Check out Survival of the Firmest: Erectile Dysfunction and Death and Atkins Diet: Trouble Keeping It Up.

Fat in the bloodstream can also impair our ability to control blood sugar levels. Learn more with What Causes Insulin Resistance?, The Spillover Effect Links Obesity to Diabetes, and Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Finally, for more on how diet affects our arteries, check out Tea and Artery Function, Vinegar and Artery Function, and Plant-Based Diets and Artery Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Choosing to Have a Normal Blood Pressure

Oct 5 Blood Pressure copy.jpeg

For the first 90% of our evolution, humans ate diets containing less than a quarter teaspoon of salt a day. Why? Because we ate mostly plants. Since we went millions of years without salt shakers, our bodies evolved into salt-conserving machines, which served us well until we discovered salt could be used to preserve foods. Without refrigeration, this was a big boon to human civilization. Of course, this may have led to a general rise in blood pressure, but does that matter if the alternative is starving to death since all your food rotted away? But where does that leave us now, when we no longer have to live off pickles and jerky? We are genetically programmed to eat ten times less salt than we do now. Even many "low"-salt diets can be considered high-salt diets. That's why it's critical to understand what the concept of "normal" is when it comes to salt.

As I discuss in my video High Blood Pressure May Be a Choice, having a "normal" salt intake can lead to a "normal" blood pressure, which can help us to die from all the "normal" causes, like heart attacks and strokes.

Doctors used to be taught that a "normal" systolic blood pressure (the top number) is approximately 100 plus age. Babies start out with a blood pressure around 95 over 60, but then as we age that 95 can go to 120 by our 20s, then 140 in our 40s, and keep climbing as we age. (140 is the official cut-off above which one technically has high blood pressure.) That was considered normal, since everyone's blood pressure creeps up as we get older. And if that's normal, then heart attacks and strokes are normal too, since risk starts rising once we start getting above the 100 we had as a baby.

If blood pressures over 100 are associated with disease, maybe they should be considered abnormal. Were these elevated blood pressures caused by our abnormally high salt intake--ten times more than what our bodies were designed to handle? Maybe if we ate a natural amount of salt, our blood pressures would not go up with age and we'd be protected. Of course, to test that theory you'd have to find a population in modern times that doesn't use salt, eat processed food, or go out to eat. For that, you'd have to go deep into the Amazon rainforest.

Meet the Yanomamo people, a no-salt culture with the lowest salt intake ever reported. That is, they have a totally normal-for-our-species salt intake. So, what happens to their blood pressure on a no- or low-salt diet as they age? They start out with a blood pressure of about 100 over 60 and end up with a blood pressure of about 100 over 60. Though theirs is described as a salt-deficient diet, that's like saying they have a diet deficient in Twinkies. They're the ones, it seems, who are eating truly normal salt intakes, which leads to truly normal blood pressures. Those in their 50s have the blood pressure of a 20-year-old. What was the percentage of the population tested with high blood pressure? Zero. However, elsewhere in Brazil, up to 38% of the population may be affected. The Yanomamos probably represent the ultimate human example of the importance of salt on blood pressure.

Of course, there could have been other factors. They didn't drink alcohol, ate a high-fiber and plant-based diet, got lots of exercise, and had no obesity. There are a number of plant-based populations eating little salt who experience no rise of blood pressure with age, but how do we know what exactly is to blame? Ideally, we'd do an interventional trial. Imagine if we took people literally dying from out-of-control high blood pressure (so called malignant hypertension) where you go blind from bleeding into your eyes, your kidneys shut down, and your heart fails, and then we withhold from these patients blood pressure medications so their fate is certain death. Then, what if we put them on a Yanomamo level of salt intake--that is, a normal-for-the-human-species salt intake--and, if instead of dying, they walked away cured of their hypertension? That would pretty much seal the deal.

Enter Dr. Walter Kempner and his rice and fruit diet. Patients started with blood pressures of 210 over 140, which dropped down to 80 over 60. Amazing stuff, but how could he ethically withhold all modern blood pressure medications and treat with diet alone? This was back in the 1940s, and the drugs hadn't been invented yet.

His diet wasn't just extremely low salt, though; it was also strictly plant-based and extremely low in fat, protein, and calories. There is no doubt that Kempner's rice diet achieved remarkable results, and Kempner is now remembered as the person who demonstrated, beyond any shadow of doubt, that high blood pressure can often be lowered by a low enough salt diet.

Forty years ago, it was acknowledged that the evidence is very good, if not conclusive, that a low enough reduction of salt in the diet would result in the prevention of essential hypertension (the rising of blood pressure as we age) and its disappearance as a major public health problem. It looks like we knew how to stop this four decades ago. During this time, how many people have died? Today, high blood pressure may kill 400,000 Americans every year--causing a thousand unnecessary deaths every day.


I have a whole series of videos on salt, including Sprinkling Doubt: Taking Sodium Skeptics with a Pinch of Salt, The Evidence That Salt Raises Blood Pressure, Shaking the Salt Habit and Sodium & Autoimmune Disease: Rubbing Salt in the Wound.

Canned foods are infamous for their sodium content, but there are no-salt varieties. Learn more with my video Canned Beans or Cooked Beans?. Cutting down on sodium is one of the ways we could be Improving on the Mediterranean Diet. Beyond heart health, reducing salt intake could also help our kidneys (How to Treat Kidney Stones with Diet) but if you cut down on salt, won't everything taste like cardboard? See Changing Our Taste Buds.

For more on hypertension, see How to Prevent High Blood Pressure with Diet, How to Treat High Blood Pressure with Diet, and How Not to Die from High Blood Pressure. What if you already eat healthfully and still can't get your pressures down? Try adding hibiscus tea (Hibiscus Tea vs. Plant-Based Diets for Hypertension) and ground flaxseeds (Flax Seeds for Hypertension) to your diet, and, of course, make sure you're exercising regularly (Longer Life Within Walking Distance).

Dr. Kempner and his rice diet are so fascinating they warrant an entire video series. Check out Kempner Rice Diet: Whipping Us Into Shape, Drugs and the Demise of the Rice Diet, Can Diabetic Retinopathy Be Reversed?, and Can Morbid Obesity be Reversed Through Diet?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Choosing to Have a Normal Blood Pressure

Oct 5 Blood Pressure copy.jpeg

For the first 90% of our evolution, humans ate diets containing less than a quarter teaspoon of salt a day. Why? Because we ate mostly plants. Since we went millions of years without salt shakers, our bodies evolved into salt-conserving machines, which served us well until we discovered salt could be used to preserve foods. Without refrigeration, this was a big boon to human civilization. Of course, this may have led to a general rise in blood pressure, but does that matter if the alternative is starving to death since all your food rotted away? But where does that leave us now, when we no longer have to live off pickles and jerky? We are genetically programmed to eat ten times less salt than we do now. Even many "low"-salt diets can be considered high-salt diets. That's why it's critical to understand what the concept of "normal" is when it comes to salt.

As I discuss in my video High Blood Pressure May Be a Choice, having a "normal" salt intake can lead to a "normal" blood pressure, which can help us to die from all the "normal" causes, like heart attacks and strokes.

Doctors used to be taught that a "normal" systolic blood pressure (the top number) is approximately 100 plus age. Babies start out with a blood pressure around 95 over 60, but then as we age that 95 can go to 120 by our 20s, then 140 in our 40s, and keep climbing as we age. (140 is the official cut-off above which one technically has high blood pressure.) That was considered normal, since everyone's blood pressure creeps up as we get older. And if that's normal, then heart attacks and strokes are normal too, since risk starts rising once we start getting above the 100 we had as a baby.

If blood pressures over 100 are associated with disease, maybe they should be considered abnormal. Were these elevated blood pressures caused by our abnormally high salt intake--ten times more than what our bodies were designed to handle? Maybe if we ate a natural amount of salt, our blood pressures would not go up with age and we'd be protected. Of course, to test that theory you'd have to find a population in modern times that doesn't use salt, eat processed food, or go out to eat. For that, you'd have to go deep into the Amazon rainforest.

Meet the Yanomamo people, a no-salt culture with the lowest salt intake ever reported. That is, they have a totally normal-for-our-species salt intake. So, what happens to their blood pressure on a no- or low-salt diet as they age? They start out with a blood pressure of about 100 over 60 and end up with a blood pressure of about 100 over 60. Though theirs is described as a salt-deficient diet, that's like saying they have a diet deficient in Twinkies. They're the ones, it seems, who are eating truly normal salt intakes, which leads to truly normal blood pressures. Those in their 50s have the blood pressure of a 20-year-old. What was the percentage of the population tested with high blood pressure? Zero. However, elsewhere in Brazil, up to 38% of the population may be affected. The Yanomamos probably represent the ultimate human example of the importance of salt on blood pressure.

Of course, there could have been other factors. They didn't drink alcohol, ate a high-fiber and plant-based diet, got lots of exercise, and had no obesity. There are a number of plant-based populations eating little salt who experience no rise of blood pressure with age, but how do we know what exactly is to blame? Ideally, we'd do an interventional trial. Imagine if we took people literally dying from out-of-control high blood pressure (so called malignant hypertension) where you go blind from bleeding into your eyes, your kidneys shut down, and your heart fails, and then we withhold from these patients blood pressure medications so their fate is certain death. Then, what if we put them on a Yanomamo level of salt intake--that is, a normal-for-the-human-species salt intake--and, if instead of dying, they walked away cured of their hypertension? That would pretty much seal the deal.

Enter Dr. Walter Kempner and his rice and fruit diet. Patients started with blood pressures of 210 over 140, which dropped down to 80 over 60. Amazing stuff, but how could he ethically withhold all modern blood pressure medications and treat with diet alone? This was back in the 1940s, and the drugs hadn't been invented yet.

His diet wasn't just extremely low salt, though; it was also strictly plant-based and extremely low in fat, protein, and calories. There is no doubt that Kempner's rice diet achieved remarkable results, and Kempner is now remembered as the person who demonstrated, beyond any shadow of doubt, that high blood pressure can often be lowered by a low enough salt diet.

Forty years ago, it was acknowledged that the evidence is very good, if not conclusive, that a low enough reduction of salt in the diet would result in the prevention of essential hypertension (the rising of blood pressure as we age) and its disappearance as a major public health problem. It looks like we knew how to stop this four decades ago. During this time, how many people have died? Today, high blood pressure may kill 400,000 Americans every year--causing a thousand unnecessary deaths every day.


I have a whole series of videos on salt, including Sprinkling Doubt: Taking Sodium Skeptics with a Pinch of Salt, The Evidence That Salt Raises Blood Pressure, Shaking the Salt Habit and Sodium & Autoimmune Disease: Rubbing Salt in the Wound.

Canned foods are infamous for their sodium content, but there are no-salt varieties. Learn more with my video Canned Beans or Cooked Beans?. Cutting down on sodium is one of the ways we could be Improving on the Mediterranean Diet. Beyond heart health, reducing salt intake could also help our kidneys (How to Treat Kidney Stones with Diet) but if you cut down on salt, won't everything taste like cardboard? See Changing Our Taste Buds.

For more on hypertension, see How to Prevent High Blood Pressure with Diet, How to Treat High Blood Pressure with Diet, and How Not to Die from High Blood Pressure. What if you already eat healthfully and still can't get your pressures down? Try adding hibiscus tea (Hibiscus Tea vs. Plant-Based Diets for Hypertension) and ground flaxseeds (Flax Seeds for Hypertension) to your diet, and, of course, make sure you're exercising regularly (Longer Life Within Walking Distance).

Dr. Kempner and his rice diet are so fascinating they warrant an entire video series. Check out Kempner Rice Diet: Whipping Us Into Shape, Drugs and the Demise of the Rice Diet, Can Diabetic Retinopathy Be Reversed?, and Can Morbid Obesity be Reversed Through Diet?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Reversing Diabetic Blindness with Diet

Reversing Diabetic Blindness with Diet.jpeg

Though many reported feeling better on Dr. Walter Kempner's rice and fruit diet, he refused to accept such anecdotal evidence as proof of success. He wanted objective measurements. The most famous were his "eyegrounds photographs," taken with a special camera that allowed one to visualize the back of the eye. In doing so, he proved diet can arrest the bleeding, oozing, and swelling you see in the back of the eye in people with severe kidney, hypertensive, or heart disease. Even more than that, he proved that diet could actually reverse it, something never thought possible.

In my video, Can Diabetic Retinopathy Be Reversed?, you can see before and after images of the back of patients' eyes. He found reversal to such a degree that even those who could no longer distinguish large objects were able to once again read fine print. Dr. Kempner had shown a reversal of blindness with diet.

The results were so dramatic that the head of the department of ophthalmology at Duke, where Kempner worked, was questioned as to whether they were somehow faked. He assured them they were not. In fact, he wrote in one person's chart, "This patient's eyegrounds are improved to an unbelievable degree." Not only had he never seen anything like it, he couldn't remember ever seeing a patient with such advanced disease even being alive 15 months later.

The magnitude of the improvements Kempner got--reversal of end-stage heart and kidney failure--was surprising, simply beyond belief. But as Kempner said as his closing sentence of a presentation before the American College of Physicians, "The important result is not that the change in the course of the disease has been achieved by the rice diet but that the course of the disease can be changed."

Now that we have high blood pressure drugs, we see less hypertensive retinopathy, but we still see a lot of diabetic retinopathy, now the leading cause of blindness in American adults. Even with intensive diabetes treatment--at least three insulin injections a day with the best modern technology has to offer--the best we can offer is usually just a slowing of the progression of the disease.

So, in the 21st century, we slow down your blindness. Yet a half century ago, Kempner proved we could reverse it. Kempner started out using his plant-based rice diet ultra-low in sodium, fat, cholesterol, and protein to reverse kidney and heart failure; he actually assumed the diet would make diabetes worse. He expected a 90% carbohydrate diet would increase insulin requirements, however, the opposite proved to be true. He took the next 100 patients with diabetes who walked through his door who went on the rice diet for at least three months and found their fasting blood sugars dropped despite a drop in the insulin they were taking. What really blew people away was this: Forty-four of the patients had diabetic retinopathy, and, in 30% of the cases, their eyes improved. That's not supposed to happen; diabetic retinopathy had been considered "a sign of irreversible destruction." What does this change mean in real life? Patients went from unable to even read headlines to normal vision.

The remarkable success Dr. Kempner had reversing some of the most dreaded complications of diabetes with his rice and fruit diet was not because of weight loss. The improvements occurred even in those patients who did not lose significant weight, so it must have been something specific about the diet. Maybe it was his total elimination of animal protein, animal fat, and cholesterol? Or perhaps it was his radical reduction in sodium, fat, and protein in general? We don't know.

How do we treat diabetic retinopathy these days? With steroids and other drugs injected straight into the eyeball. If that doesn't work, there's always pan-retinal laser photocoagulation, in which laser burns are etched over nearly the entire retina. Surgeons literally burn out the back of your eye. Why would they do that? The theory is that by killing off most of the retina, the little pieces you leave behind may get more blood flow.

When I see that, along with Kempner's work, I can't help but feel like history has been reversed. It seems as though it should have gone like, "Can you believe 50 years ago the best we had was this barbaric, burn-out-your-socket surgery? Thank goodness we've since learned that through dietary means alone, we can reverse the blindness." But instead of learning, medicine seems to have forgotten.

I documented the extraordinary Kempner story previously in Kempner Rice Diet: Whipping Us Into Shape and Drugs and the Demise of the Rice Diet. The reason I keep coming back to this is not to suggest people should go on such a diet (it is too extreme and potentially dangerous to do without strict medical supervision), but to show the power of dietary change to yield tremendous healing effects.

The best way to prevent diabetic blindness is to prevent or reverse diabetes in the first place. See, for example:

Why wouldn't a diet of white rice make diabetes worse? See If White Rice Is Linked to Diabetes, What About China?

For more on the nitty gritty on what is the actual cause of type 2 diabetes, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Community Eye Health / Flickr. This image has been modified.

Original Link

Reversing Diabetic Blindness with Diet

Reversing Diabetic Blindness with Diet.jpeg

Though many reported feeling better on Dr. Walter Kempner's rice and fruit diet, he refused to accept such anecdotal evidence as proof of success. He wanted objective measurements. The most famous were his "eyegrounds photographs," taken with a special camera that allowed one to visualize the back of the eye. In doing so, he proved diet can arrest the bleeding, oozing, and swelling you see in the back of the eye in people with severe kidney, hypertensive, or heart disease. Even more than that, he proved that diet could actually reverse it, something never thought possible.

In my video, Can Diabetic Retinopathy Be Reversed?, you can see before and after images of the back of patients' eyes. He found reversal to such a degree that even those who could no longer distinguish large objects were able to once again read fine print. Dr. Kempner had shown a reversal of blindness with diet.

The results were so dramatic that the head of the department of ophthalmology at Duke, where Kempner worked, was questioned as to whether they were somehow faked. He assured them they were not. In fact, he wrote in one person's chart, "This patient's eyegrounds are improved to an unbelievable degree." Not only had he never seen anything like it, he couldn't remember ever seeing a patient with such advanced disease even being alive 15 months later.

The magnitude of the improvements Kempner got--reversal of end-stage heart and kidney failure--was surprising, simply beyond belief. But as Kempner said as his closing sentence of a presentation before the American College of Physicians, "The important result is not that the change in the course of the disease has been achieved by the rice diet but that the course of the disease can be changed."

Now that we have high blood pressure drugs, we see less hypertensive retinopathy, but we still see a lot of diabetic retinopathy, now the leading cause of blindness in American adults. Even with intensive diabetes treatment--at least three insulin injections a day with the best modern technology has to offer--the best we can offer is usually just a slowing of the progression of the disease.

So, in the 21st century, we slow down your blindness. Yet a half century ago, Kempner proved we could reverse it. Kempner started out using his plant-based rice diet ultra-low in sodium, fat, cholesterol, and protein to reverse kidney and heart failure; he actually assumed the diet would make diabetes worse. He expected a 90% carbohydrate diet would increase insulin requirements, however, the opposite proved to be true. He took the next 100 patients with diabetes who walked through his door who went on the rice diet for at least three months and found their fasting blood sugars dropped despite a drop in the insulin they were taking. What really blew people away was this: Forty-four of the patients had diabetic retinopathy, and, in 30% of the cases, their eyes improved. That's not supposed to happen; diabetic retinopathy had been considered "a sign of irreversible destruction." What does this change mean in real life? Patients went from unable to even read headlines to normal vision.

The remarkable success Dr. Kempner had reversing some of the most dreaded complications of diabetes with his rice and fruit diet was not because of weight loss. The improvements occurred even in those patients who did not lose significant weight, so it must have been something specific about the diet. Maybe it was his total elimination of animal protein, animal fat, and cholesterol? Or perhaps it was his radical reduction in sodium, fat, and protein in general? We don't know.

How do we treat diabetic retinopathy these days? With steroids and other drugs injected straight into the eyeball. If that doesn't work, there's always pan-retinal laser photocoagulation, in which laser burns are etched over nearly the entire retina. Surgeons literally burn out the back of your eye. Why would they do that? The theory is that by killing off most of the retina, the little pieces you leave behind may get more blood flow.

When I see that, along with Kempner's work, I can't help but feel like history has been reversed. It seems as though it should have gone like, "Can you believe 50 years ago the best we had was this barbaric, burn-out-your-socket surgery? Thank goodness we've since learned that through dietary means alone, we can reverse the blindness." But instead of learning, medicine seems to have forgotten.

I documented the extraordinary Kempner story previously in Kempner Rice Diet: Whipping Us Into Shape and Drugs and the Demise of the Rice Diet. The reason I keep coming back to this is not to suggest people should go on such a diet (it is too extreme and potentially dangerous to do without strict medical supervision), but to show the power of dietary change to yield tremendous healing effects.

The best way to prevent diabetic blindness is to prevent or reverse diabetes in the first place. See, for example:

Why wouldn't a diet of white rice make diabetes worse? See If White Rice Is Linked to Diabetes, What About China?

For more on the nitty gritty on what is the actual cause of type 2 diabetes, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Community Eye Health / Flickr. This image has been modified.

Original Link

What Happened to the Rice Diet?

What Happened to the Rice Diet?.jpeg

During his career at Duke, Dr. Walter Kempner treated more than 18,000 patients with his rice diet. The diet was originally designed as a treatment for kidney failure and out-of-control high blood pressure at a time when these diagnoses were essentially a death sentence. Patients who would have died in all other hospitals had a reasonable chance for survival if they came under Kempner's care.

The results were so dramatic that many experienced physicians suspected him of falsifying data, because he was essentially reversing terminal diseases with rice and fruit, diseases understood to be incurable by the best of modern medicine at the time. Intensive investigations into his clinic vindicated his work, however, which other researchers were then able to replicate and validate.

Kempner was criticized for his lack of controls, meaning that when patients came to him he didn't randomly allocate half to his rice treatment and put the other half on conventional therapy. Kempner argued that the patients each acted as their own controls. For example, one patient, after the medical profession threw everything they had at him, still had blood pressure as high as 220 over 160. A normal blood pressure is considered to be around 120 over 80--which is where Kempner's rice diet took him. Had the patient not been given the rice diet, his pressures might have been even lower, though: zero over zero, because he'd likely be dead. The "control group" in Kempner's day had a survival expectancy estimated at 6 months. To randomize patients to conventional care would be to randomize them to their deaths.

We can also compare those who stuck to the diet to those who didn't. In one study, of those who started the rice diet but then stopped it within a year, 80% died. For those who made it a year but then gave up the diet, instead of an 80% chance of dying, they had about a 50% chance, a flip of the coin. Of those that stuck with the program, 90% lived to tell the tale.

Beginning in the late 1950's, drugs became available that effectively reduced blood pressure and hypertension, leading to a decreased demand for the rice diet. What conclusions can we draw from this all-but-forgotten therapy for hypertension? Not only was it the first effective therapy for high blood pressure, it may be equal to or more effective than our current multi-drug treatments. See Drugs & the Demise of the Rice Diet.

This causes one to speculate on the current practice of placing patients on one drug, then another, and perhaps a third until the blood pressure is controlled, with lip-service advocacy of a moderate reduction in dietary sodium, fat, and protein intake. At the same time, the impressive effectiveness of the rice-fruit diet, which is able to quickly stop the leakage from our arteries, lower increased intracranial pressure, reduce heart size, reverse the ECG changes, reverse heart failure, reduce weight, and markedly improve diabetes, is ignored.

Should we return to the Kempner protocol of starting with the most effective therapy, saving drugs for patients who fail to respond or who are unable or unwilling to restrict their diet? Today many people follow a plant-based diet as a choice, which is similar to what Kempner was often able to transition people to. After their high blood pressure was cured by the rice diet, patients were often able to gradually transition to a less strenuous dietary regime without adding medications and with no return of the elevated blood pressure.

If the Kempner sequence of a strictest of strict plant-based diets to a saner plant-based type diet offers the quickest and best approach to effective therapy, why isn't it still in greater use? The powerful role of the pharmaceutical industry in steering medical care away from dietary treatment to medications should be noted. Who profits from dietary treatment? Who provides the support for investigation and the funds for clinical trials? There is more to overcome than just the patient's reluctance to change their diet.

What Kempner wrote to a patient in 1954 is as true now as it was 60 years ago:

"[D]rugs can be very useful if properly employed and used in conjunction with intensive dietary treatment. However, the real difficulty is that Hypertensive Vascular Disease with all its possible complications--heart disease, kidney disease, stroke, blindness--is still treated very casually, a striking contrast to the attitude toward cancer. Since patients, physicians, and the chemical industry prefer the taking, prescribing, and selling of drugs to a treatment inconvenient to patient and physician and of no benefit to the pharmaceutical industry, the mortality figures for these diseases are still rather appalling."

Despite hundreds of drugs on the market now, high blood pressure remains the #1 cause of death and disability in the world, killing off 9 million people a year. A whole food plant-based diet treats the underlying cause. As Dr. Kempner explained to a patient, "If you should find a heap of manure on your living room floor, I do not recommend that you go buy some Air-Wick [an air freshener] and perfume. I recommend that you get a bucket and shovel and a strong scrubbing brush. Then, when your living room floor is clean again, why, you may certainly apply some Air-Wick if you wish."

As the great physician Maimonides said about 800 years ago, any illness that can be treated by diet alone should be treated by no other means.

For background on this amazing story, see Kempner Rice Diet: Whipping Us Into Shape. He would be proud that there is a whole medical specialty now: Lifestyle Medicine: Treating the Causes of Disease.

This reminds me of the role statin cholesterol-lowering drugs have played in seducing people into the magic bullet approach, but as with all magic it appears to mostly be misdirection:

Check out a couple of my recent overview videos for more on this topic: How Not to Die from Heart Disease and Taking Personal Responsibility for Your Health.

In this day and age, What Diet Should Physician's Recommend?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. Image has been modified.

Original Link

What Happened to the Rice Diet?

What Happened to the Rice Diet?.jpeg

During his career at Duke, Dr. Walter Kempner treated more than 18,000 patients with his rice diet. The diet was originally designed as a treatment for kidney failure and out-of-control high blood pressure at a time when these diagnoses were essentially a death sentence. Patients who would have died in all other hospitals had a reasonable chance for survival if they came under Kempner's care.

The results were so dramatic that many experienced physicians suspected him of falsifying data, because he was essentially reversing terminal diseases with rice and fruit, diseases understood to be incurable by the best of modern medicine at the time. Intensive investigations into his clinic vindicated his work, however, which other researchers were then able to replicate and validate.

Kempner was criticized for his lack of controls, meaning that when patients came to him he didn't randomly allocate half to his rice treatment and put the other half on conventional therapy. Kempner argued that the patients each acted as their own controls. For example, one patient, after the medical profession threw everything they had at him, still had blood pressure as high as 220 over 160. A normal blood pressure is considered to be around 120 over 80--which is where Kempner's rice diet took him. Had the patient not been given the rice diet, his pressures might have been even lower, though: zero over zero, because he'd likely be dead. The "control group" in Kempner's day had a survival expectancy estimated at 6 months. To randomize patients to conventional care would be to randomize them to their deaths.

We can also compare those who stuck to the diet to those who didn't. In one study, of those who started the rice diet but then stopped it within a year, 80% died. For those who made it a year but then gave up the diet, instead of an 80% chance of dying, they had about a 50% chance, a flip of the coin. Of those that stuck with the program, 90% lived to tell the tale.

Beginning in the late 1950's, drugs became available that effectively reduced blood pressure and hypertension, leading to a decreased demand for the rice diet. What conclusions can we draw from this all-but-forgotten therapy for hypertension? Not only was it the first effective therapy for high blood pressure, it may be equal to or more effective than our current multi-drug treatments. See Drugs & the Demise of the Rice Diet.

This causes one to speculate on the current practice of placing patients on one drug, then another, and perhaps a third until the blood pressure is controlled, with lip-service advocacy of a moderate reduction in dietary sodium, fat, and protein intake. At the same time, the impressive effectiveness of the rice-fruit diet, which is able to quickly stop the leakage from our arteries, lower increased intracranial pressure, reduce heart size, reverse the ECG changes, reverse heart failure, reduce weight, and markedly improve diabetes, is ignored.

Should we return to the Kempner protocol of starting with the most effective therapy, saving drugs for patients who fail to respond or who are unable or unwilling to restrict their diet? Today many people follow a plant-based diet as a choice, which is similar to what Kempner was often able to transition people to. After their high blood pressure was cured by the rice diet, patients were often able to gradually transition to a less strenuous dietary regime without adding medications and with no return of the elevated blood pressure.

If the Kempner sequence of a strictest of strict plant-based diets to a saner plant-based type diet offers the quickest and best approach to effective therapy, why isn't it still in greater use? The powerful role of the pharmaceutical industry in steering medical care away from dietary treatment to medications should be noted. Who profits from dietary treatment? Who provides the support for investigation and the funds for clinical trials? There is more to overcome than just the patient's reluctance to change their diet.

What Kempner wrote to a patient in 1954 is as true now as it was 60 years ago:

"[D]rugs can be very useful if properly employed and used in conjunction with intensive dietary treatment. However, the real difficulty is that Hypertensive Vascular Disease with all its possible complications--heart disease, kidney disease, stroke, blindness--is still treated very casually, a striking contrast to the attitude toward cancer. Since patients, physicians, and the chemical industry prefer the taking, prescribing, and selling of drugs to a treatment inconvenient to patient and physician and of no benefit to the pharmaceutical industry, the mortality figures for these diseases are still rather appalling."

Despite hundreds of drugs on the market now, high blood pressure remains the #1 cause of death and disability in the world, killing off 9 million people a year. A whole food plant-based diet treats the underlying cause. As Dr. Kempner explained to a patient, "If you should find a heap of manure on your living room floor, I do not recommend that you go buy some Air-Wick [an air freshener] and perfume. I recommend that you get a bucket and shovel and a strong scrubbing brush. Then, when your living room floor is clean again, why, you may certainly apply some Air-Wick if you wish."

As the great physician Maimonides said about 800 years ago, any illness that can be treated by diet alone should be treated by no other means.

For background on this amazing story, see Kempner Rice Diet: Whipping Us Into Shape. He would be proud that there is a whole medical specialty now: Lifestyle Medicine: Treating the Causes of Disease.

This reminds me of the role statin cholesterol-lowering drugs have played in seducing people into the magic bullet approach, but as with all magic it appears to mostly be misdirection:

Check out a couple of my recent overview videos for more on this topic: How Not to Die from Heart Disease and Taking Personal Responsibility for Your Health.

In this day and age, What Diet Should Physician's Recommend?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. Image has been modified.

Original Link

What Animal Protein Does in Your Colon

What Animal Protein Does in Your Colon.jpeg

There's a take-off of the industry slogan, "Beef: It's What's For Dinner" - "Beef: It's What's Rotting in Your Colon." I saw this on a shirt once with some friends and I was such the party pooper--no pun intended--explaining to everyone that meat is fully digested in the small intestine, and never makes it down into the colon. It's no fun hanging out with biology geeks.

But I was wrong!

It's been estimated that with a typical Western diet, up to 12 grams of protein can escape digestion, and when it reaches the colon, it can be turned into toxic substances like ammonia. This degradation of undigested protein in the colon is called putrefaction, so a little meat can actually end up putrefying in our colon. The problem is that some of the by-products of this putrefaction process can be toxic.

It's generally accepted that carbohydrate fermentation--the fiber and resistant starches that reach our colon--results in beneficial effects because of the generation of short-chain fatty acids like butyrate, whereas protein fermentation is considered detrimental. Protein fermentation mainly occurs in the lower end of colon and results in the production of potentially toxic metabolites. That may be why colorectal cancer and ulcerative colitis tends to happen lower down--because that's where the protein is putrefying.

Probably the simplest strategy to reduce the potential harm of protein fermentation is to reduce dietary protein intake. But the accumulation of these toxic byproducts of protein metabolism may be attenuated by the fermentation of undigested plant matter. In my video, Bowel Wars: Hydrogen Sulfide vs. Butyrate, you can see a study out of Australia showed that if you give people foods containing resistant starch you can block the accumulation of potentially harmful byproducts of protein metabolism. Resistant starch is resistant to small intestine digestion and so it makes it down to our colon where it can feed our good bacteria. Resistant starch is found in cooked beans, split peas, chickpeas, lentils, raw oatmeal, and cooled cooked pasta (like macaroni salad). Apparently, the more starch that ends up in the colon, the less ammonia that is produced.

Of course, there's protein in plants too. The difference is that animal proteins tend to have more sulfur-containing amino acids like methionine, which can be turned into hydrogen sulfide in our colon. Hydrogen sulfide is the rotten egg gas that may play a role in the development of the inflammatory bowel disease, ulcerative colitis (see Preventing Ulcerative Colitis with Diet).

The toxic effects of hydrogen sulfide appear to be a result of blocking the ability of the cells lining our colon from utilizing butyrate, which is what our good bacteria make from the fiber and resistant starch we eat. It's like this constant battle in our colon between the bad metabolites of protein, hydrogen sulfide, and the good metabolites of carbohydrates, butyrate. Using human colon samples, researchers were able to show that the adverse effects of sulfide could be reversed by butyrate. So we can either cut down on meat, eat more plants, or both.

There are two ways hydrogen sulfide can be produced, though. It's mainly present in our large intestine as a result of the breakdown of sulfur-containing proteins, but the rotten egg gas can also be generated from inorganic sulfur preservatives like sulfites and sulfur dioxide.

Sulfur dioxide is used as a preservative in dried fruit, and sulfites are added to wines. We can avoid sulfur additives by reading labels or by just choosing organic, since they're forbidden from organic fruits and beverages by law.

More than 35 years ago, studies started implicating sulfur dioxide preservatives in the exacerbation of asthma. This so-called "sulfite-sensitivity" seems to affect only about 1 in 2,000 people, so I recommended those with asthma avoid it, but otherwise I considered the preservative harmless. I am now not so sure, and advise people to avoid it when possible.

Cabbage family vegetables naturally have some sulfur compounds, but thankfully, after following more than a hundred thousand women for over 25 years, researchers concluded cruciferous vegetables were not associated with elevated colitis risk.

Because of animal protein and processed food intake, the standard American diet may contain five or six times more sulfur than a diet centered around unprocessed plant foods. This may help explain the rarity of inflammatory bowel disease among those eating traditional whole food, plant-based diets.

How could companies just add things like sulfur dioxide to foods without adequate safety testing? See Who Determines if Food Additives are Safe? For other additives that may be a problem, see Titanium Dioxide & Inflammatory Bowel Disease and Is Carrageenan Safe?

More on this epic fermentation battle in our gut in Stool pH and Colon Cancer.

Does the sulfur-containing amino acid methionine sound familiar? You may remember it from such hits as Starving Cancer with Methionine Restriction and Methionine Restriction as a Life Extension Strategy.

These short-chain fatty acids released by our good bacteria when we eat fiber and resistant starches are what may be behind the second meal effect: Beans and the Second Meal Effect.

I mentioned ulcerative colitis. What about the other inflammatory bowel disease Crohn's? See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Animal Protein Does in Your Colon

What Animal Protein Does in Your Colon.jpeg

There's a take-off of the industry slogan, "Beef: It's What's For Dinner" - "Beef: It's What's Rotting in Your Colon." I saw this on a shirt once with some friends and I was such the party pooper--no pun intended--explaining to everyone that meat is fully digested in the small intestine, and never makes it down into the colon. It's no fun hanging out with biology geeks.

But I was wrong!

It's been estimated that with a typical Western diet, up to 12 grams of protein can escape digestion, and when it reaches the colon, it can be turned into toxic substances like ammonia. This degradation of undigested protein in the colon is called putrefaction, so a little meat can actually end up putrefying in our colon. The problem is that some of the by-products of this putrefaction process can be toxic.

It's generally accepted that carbohydrate fermentation--the fiber and resistant starches that reach our colon--results in beneficial effects because of the generation of short-chain fatty acids like butyrate, whereas protein fermentation is considered detrimental. Protein fermentation mainly occurs in the lower end of colon and results in the production of potentially toxic metabolites. That may be why colorectal cancer and ulcerative colitis tends to happen lower down--because that's where the protein is putrefying.

Probably the simplest strategy to reduce the potential harm of protein fermentation is to reduce dietary protein intake. But the accumulation of these toxic byproducts of protein metabolism may be attenuated by the fermentation of undigested plant matter. In my video, Bowel Wars: Hydrogen Sulfide vs. Butyrate, you can see a study out of Australia showed that if you give people foods containing resistant starch you can block the accumulation of potentially harmful byproducts of protein metabolism. Resistant starch is resistant to small intestine digestion and so it makes it down to our colon where it can feed our good bacteria. Resistant starch is found in cooked beans, split peas, chickpeas, lentils, raw oatmeal, and cooled cooked pasta (like macaroni salad). Apparently, the more starch that ends up in the colon, the less ammonia that is produced.

Of course, there's protein in plants too. The difference is that animal proteins tend to have more sulfur-containing amino acids like methionine, which can be turned into hydrogen sulfide in our colon. Hydrogen sulfide is the rotten egg gas that may play a role in the development of the inflammatory bowel disease, ulcerative colitis (see Preventing Ulcerative Colitis with Diet).

The toxic effects of hydrogen sulfide appear to be a result of blocking the ability of the cells lining our colon from utilizing butyrate, which is what our good bacteria make from the fiber and resistant starch we eat. It's like this constant battle in our colon between the bad metabolites of protein, hydrogen sulfide, and the good metabolites of carbohydrates, butyrate. Using human colon samples, researchers were able to show that the adverse effects of sulfide could be reversed by butyrate. So we can either cut down on meat, eat more plants, or both.

There are two ways hydrogen sulfide can be produced, though. It's mainly present in our large intestine as a result of the breakdown of sulfur-containing proteins, but the rotten egg gas can also be generated from inorganic sulfur preservatives like sulfites and sulfur dioxide.

Sulfur dioxide is used as a preservative in dried fruit, and sulfites are added to wines. We can avoid sulfur additives by reading labels or by just choosing organic, since they're forbidden from organic fruits and beverages by law.

More than 35 years ago, studies started implicating sulfur dioxide preservatives in the exacerbation of asthma. This so-called "sulfite-sensitivity" seems to affect only about 1 in 2,000 people, so I recommended those with asthma avoid it, but otherwise I considered the preservative harmless. I am now not so sure, and advise people to avoid it when possible.

Cabbage family vegetables naturally have some sulfur compounds, but thankfully, after following more than a hundred thousand women for over 25 years, researchers concluded cruciferous vegetables were not associated with elevated colitis risk.

Because of animal protein and processed food intake, the standard American diet may contain five or six times more sulfur than a diet centered around unprocessed plant foods. This may help explain the rarity of inflammatory bowel disease among those eating traditional whole food, plant-based diets.

How could companies just add things like sulfur dioxide to foods without adequate safety testing? See Who Determines if Food Additives are Safe? For other additives that may be a problem, see Titanium Dioxide & Inflammatory Bowel Disease and Is Carrageenan Safe?

More on this epic fermentation battle in our gut in Stool pH and Colon Cancer.

Does the sulfur-containing amino acid methionine sound familiar? You may remember it from such hits as Starving Cancer with Methionine Restriction and Methionine Restriction as a Life Extension Strategy.

These short-chain fatty acids released by our good bacteria when we eat fiber and resistant starches are what may be behind the second meal effect: Beans and the Second Meal Effect.

I mentioned ulcerative colitis. What about the other inflammatory bowel disease Crohn's? See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link