The Five Most Important Dietary Tweaks

The Five Most Important Dietary Tweaks.jpeg

Generally, adherence to healthy lifestyle patterns has decreased during the last 18 years. Obesity is up, exercise is down, and the number of people eating just five servings of fruits and veggies a day dropped like a rock. And we didn't start out that great to begin with.

Only 3% of Americans at the turn of the 21st century had the following four healthy lifestyle characteristics: not smoking, not overweight, five daily servings of fruits and vegetables, and exercising a half hour a day at least five days a week. Whether people were wealthy or college-educated didn't matter; no sub-group even remotely met clinical or public health recommendations.

Where are people falling down the most? You can see in my video What Percent of Americans Lead Healthy Lifestyles?. If you look at heart disease risk factors, for example, most people don't smoke and about half are exercising. But if we look at the healthy diet score-which is based on things like drinking less than four cups of soda a week-a scale of zero to five, only about 1% of Americans score a four or five. The American Heart Association's aggressive 2020 target to improve that by 20% would bring us up to 1.2%.

Since we've known for decades that advanced coronary artery disease may be present by age 20--with atherosclerosis often even present in young children--it is particularly disturbing that healthy lifestyle choices are declining rather than improving in the U.S.

In terms of life expectancy, the U.S. is down around 27 or 28 out of the 34 OECD free-market democracies. The people of Slovenia live a year longer than citizens of the United States. Why? According to the most rigorous analysis of risk factors ever published, the number one cause of death and disability in the United States is our diet.

It's the food.

According to the Global Burden of Disease study, the worst five things about our diet are: we don't eat enough fruit, we don't eat enough nuts and seeds, we eat too much salt, too much processed meat, and not enough vegetables.

Studies that have looked at diet quality and chronic disease mortality risk found that those scoring higher (e.g. more whole plant foods), reduced the risk of dying prematurely from heart disease, cancer, and all causes of death combined. There is now an overwhelming body of clinical and epidemiological evidence illustrating the dramatic impact of a healthy lifestyle on reducing all-cause mortality and preventing chronic diseases such as coronary heart disease, stroke, diabetes, and cancer.

Why do we eat so poorly? Aren't we scared of dying from these horrible chronic diseases? It's almost as if we're eating as though our future didn't matter. And there's actually data to back that up, from a study entitled Death Row Nutrition.

The growing macabre fascination with speculating about one's ''last meal'' offers a window into one's true consumption desires when one's value of the future is discounted close to zero. In contrast to pop culture anecdotes, a group of Cornell researchers created a catalog of actual last meals-the final food requests of 247 individuals executed in the United States during a recent five-year period. Meat was the most common request. The researchers go out of their way to note that tofu never made the list, and no one asked for a vegetarian meal. In fact, if you compare the last meals to what Americans normally eat, there's not much difference.

If we continue to eat as though they were our last meals, eventually, they will be.


A few years ago I did a video called Nation's Diet in Crisis. It's sad that it doesn't seem like much has changed. How Many Meet the Simple Seven? is another video in which you can see how your own habits stack up.

For more on fruits and veggies and living longer, see Fruits and Longevity: How Many Minutes per Mouthful? Surprised that nuts made the longevity list? See Nuts May Help Prevent Death. What about legumes? See Increased Lifespan from Beans.

The reason public health professionals are so keen on measuring lifestyle characteristics is because modest improvements may have extraordinary effects. See, for example:

Didn't know the beginnings of heart disease may already be present in children? See my video Heart Disease Starts in Childhood. Think that's tragic? Check out Heart Disease May Start in the Womb. Is it too late if we've been eating poorly most of our lives? It's Never Too Late to Start Eating Healthier.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Five Most Important Dietary Tweaks

The Five Most Important Dietary Tweaks.jpeg

Generally, adherence to healthy lifestyle patterns has decreased during the last 18 years. Obesity is up, exercise is down, and the number of people eating just five servings of fruits and veggies a day dropped like a rock. And we didn't start out that great to begin with.

Only 3% of Americans at the turn of the 21st century had the following four healthy lifestyle characteristics: not smoking, not overweight, five daily servings of fruits and vegetables, and exercising a half hour a day at least five days a week. Whether people were wealthy or college-educated didn't matter; no sub-group even remotely met clinical or public health recommendations.

Where are people falling down the most? You can see in my video What Percent of Americans Lead Healthy Lifestyles?. If you look at heart disease risk factors, for example, most people don't smoke and about half are exercising. But if we look at the healthy diet score-which is based on things like drinking less than four cups of soda a week-a scale of zero to five, only about 1% of Americans score a four or five. The American Heart Association's aggressive 2020 target to improve that by 20% would bring us up to 1.2%.

Since we've known for decades that advanced coronary artery disease may be present by age 20--with atherosclerosis often even present in young children--it is particularly disturbing that healthy lifestyle choices are declining rather than improving in the U.S.

In terms of life expectancy, the U.S. is down around 27 or 28 out of the 34 OECD free-market democracies. The people of Slovenia live a year longer than citizens of the United States. Why? According to the most rigorous analysis of risk factors ever published, the number one cause of death and disability in the United States is our diet.

It's the food.

According to the Global Burden of Disease study, the worst five things about our diet are: we don't eat enough fruit, we don't eat enough nuts and seeds, we eat too much salt, too much processed meat, and not enough vegetables.

Studies that have looked at diet quality and chronic disease mortality risk found that those scoring higher (e.g. more whole plant foods), reduced the risk of dying prematurely from heart disease, cancer, and all causes of death combined. There is now an overwhelming body of clinical and epidemiological evidence illustrating the dramatic impact of a healthy lifestyle on reducing all-cause mortality and preventing chronic diseases such as coronary heart disease, stroke, diabetes, and cancer.

Why do we eat so poorly? Aren't we scared of dying from these horrible chronic diseases? It's almost as if we're eating as though our future didn't matter. And there's actually data to back that up, from a study entitled Death Row Nutrition.

The growing macabre fascination with speculating about one's ''last meal'' offers a window into one's true consumption desires when one's value of the future is discounted close to zero. In contrast to pop culture anecdotes, a group of Cornell researchers created a catalog of actual last meals-the final food requests of 247 individuals executed in the United States during a recent five-year period. Meat was the most common request. The researchers go out of their way to note that tofu never made the list, and no one asked for a vegetarian meal. In fact, if you compare the last meals to what Americans normally eat, there's not much difference.

If we continue to eat as though they were our last meals, eventually, they will be.


A few years ago I did a video called Nation's Diet in Crisis. It's sad that it doesn't seem like much has changed. How Many Meet the Simple Seven? is another video in which you can see how your own habits stack up.

For more on fruits and veggies and living longer, see Fruits and Longevity: How Many Minutes per Mouthful? Surprised that nuts made the longevity list? See Nuts May Help Prevent Death. What about legumes? See Increased Lifespan from Beans.

The reason public health professionals are so keen on measuring lifestyle characteristics is because modest improvements may have extraordinary effects. See, for example:

Didn't know the beginnings of heart disease may already be present in children? See my video Heart Disease Starts in Childhood. Think that's tragic? Check out Heart Disease May Start in the Womb. Is it too late if we've been eating poorly most of our lives? It's Never Too Late to Start Eating Healthier.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Clostridium difficile in the Food Supply

Clostridium difficile in the Food Supply.jpeg

Clostridium difficile is one of our most urgent bacterial threats, sickening a quarter million Americans every year, and killing thousands at the cost of a billion dollars a year. And it's on the rise.

As shown in C. difficile Superbugs in Meat, uncomplicated cases have been traditionally managed with powerful antibiotics, but recent reports suggest that hypervirulent strains are increasingly resistant to medical management. There's been a rise in the percentage of cases that end up under the knife, which could be a marker of the emergence of these hypervirulent strains. Surgeons may need to remove our colon entirely to save our lives, although the surgery is so risky that the operation alone may kill us half the time.

Historically, most cases appeared in hospitals, but a landmark study published in the New England Journal of Medicine found that only about a third of cases could be linked to contact with an infected patient.

Another potential source is our food supply.

In the US, the frequency of contamination of retail chicken with these superbugs has been documented to be up to one in six packages off of store shelves. Pig-derived C. diff, however, have garnered the greatest attention from public health personnel, because the same human strain that's increasingly emerging in the community outside of hospitals is the major strain among pigs.

Since the turn of the century, C. diff is increasingly being reported as a major cause of intestinal infections in piglets. C. diff is now one of the most common causes of intestinal infections in baby piglets in the US. Particular attention has been paid to pigs because of high rates of C. diff shedding into their waste, which can lead to the contamination of retail pork. The U.S. has the highest levels of C. diff meat contamination tested so far anywhere in the world.

Carcass contamination by gut contents at slaughter probably contributes most to the presence of C. diff in meat and meat products. But why is the situation so much worst in the US? Slaughter techniques differ from country-to-country, with those in the United States evidently being more of the "quick and dirty" variety.

Colonization or contamination of pigs by superbugs such as C. difficile and MRSA at the farm production level may be more important than at the slaughterhouse level, though. One of the reasons sows and their piglets may have such high rates of C. diff is because of cross-contamination of feces in the farrowing crate, which are narrow metal cages that mother pigs are kept in while their piglets are nursing.

Can't you just follow food safety guidelines and cook the meat through? Unfortunately, current food safety guidelines are ineffective against C. difficile. To date, most food safety guidelines recommend cooking to an internal temperature as low as 63o C-the official USDA recommendation for pork-but recent studies show that C. diff spores can survive extended heating at 71o. Therefore, the guidelines should be raised to take this potentially killer infection into account.

One of the problems is that sources of C. diff food contamination might include not only fecal contamination on the surface of the meat, but transfer of spores from the gut into the actual muscles of the animal, inside the meat. Clostridia bacteria like C. diff comprise one of the main groups of bacteria involved in natural carcass degradation, and so by colonizing muscle tissue before death, C. diff can not only transmit to new hosts that eat the muscles, like us, but give them a head start on carcass break-down.

Never heard of C. diff? That's the Toxic Megacolon Superbug I've talked about before.

Another foodborne illness tied to pork industry practices is yersiniosis. See Yersinia in Pork.

MRSA (Methicillin-resistant Staph aureus) is another so-called superbug in the meat supply:

More on the scourge of antibiotic resistance and what can be done about it:

How is it even legal to sell foods with such pathogens? See Salmonella in Chicken & Turkey: Deadly But Not Illegal and Chicken Salmonella Thanks to Meat Industry Lawsuit.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: USDA / Flickr. This image has been modified.

Original Link

Clostridium difficile in the Food Supply

Clostridium difficile in the Food Supply.jpeg

Clostridium difficile is one of our most urgent bacterial threats, sickening a quarter million Americans every year, and killing thousands at the cost of a billion dollars a year. And it's on the rise.

As shown in C. difficile Superbugs in Meat, uncomplicated cases have been traditionally managed with powerful antibiotics, but recent reports suggest that hypervirulent strains are increasingly resistant to medical management. There's been a rise in the percentage of cases that end up under the knife, which could be a marker of the emergence of these hypervirulent strains. Surgeons may need to remove our colon entirely to save our lives, although the surgery is so risky that the operation alone may kill us half the time.

Historically, most cases appeared in hospitals, but a landmark study published in the New England Journal of Medicine found that only about a third of cases could be linked to contact with an infected patient.

Another potential source is our food supply.

In the US, the frequency of contamination of retail chicken with these superbugs has been documented to be up to one in six packages off of store shelves. Pig-derived C. diff, however, have garnered the greatest attention from public health personnel, because the same human strain that's increasingly emerging in the community outside of hospitals is the major strain among pigs.

Since the turn of the century, C. diff is increasingly being reported as a major cause of intestinal infections in piglets. C. diff is now one of the most common causes of intestinal infections in baby piglets in the US. Particular attention has been paid to pigs because of high rates of C. diff shedding into their waste, which can lead to the contamination of retail pork. The U.S. has the highest levels of C. diff meat contamination tested so far anywhere in the world.

Carcass contamination by gut contents at slaughter probably contributes most to the presence of C. diff in meat and meat products. But why is the situation so much worst in the US? Slaughter techniques differ from country-to-country, with those in the United States evidently being more of the "quick and dirty" variety.

Colonization or contamination of pigs by superbugs such as C. difficile and MRSA at the farm production level may be more important than at the slaughterhouse level, though. One of the reasons sows and their piglets may have such high rates of C. diff is because of cross-contamination of feces in the farrowing crate, which are narrow metal cages that mother pigs are kept in while their piglets are nursing.

Can't you just follow food safety guidelines and cook the meat through? Unfortunately, current food safety guidelines are ineffective against C. difficile. To date, most food safety guidelines recommend cooking to an internal temperature as low as 63o C-the official USDA recommendation for pork-but recent studies show that C. diff spores can survive extended heating at 71o. Therefore, the guidelines should be raised to take this potentially killer infection into account.

One of the problems is that sources of C. diff food contamination might include not only fecal contamination on the surface of the meat, but transfer of spores from the gut into the actual muscles of the animal, inside the meat. Clostridia bacteria like C. diff comprise one of the main groups of bacteria involved in natural carcass degradation, and so by colonizing muscle tissue before death, C. diff can not only transmit to new hosts that eat the muscles, like us, but give them a head start on carcass break-down.

Never heard of C. diff? That's the Toxic Megacolon Superbug I've talked about before.

Another foodborne illness tied to pork industry practices is yersiniosis. See Yersinia in Pork.

MRSA (Methicillin-resistant Staph aureus) is another so-called superbug in the meat supply:

More on the scourge of antibiotic resistance and what can be done about it:

How is it even legal to sell foods with such pathogens? See Salmonella in Chicken & Turkey: Deadly But Not Illegal and Chicken Salmonella Thanks to Meat Industry Lawsuit.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: USDA / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Reducing Glycotoxin Intake to Help Reduce Brain Loss

Reducing Glycotoxin Intake to Prevent Alzheimer's.jpg

Each of us has about six billion miles of DNA. How does our body keep it from getting all tangled up? There are special proteins called histones, which act like spools with DNA as the thread. Enzymes called sirtuins wrap the DNA around the histones and by doing so, silence whatever genes were in that stretch of DNA, hence their name SIRtuins, which stands for silencing information regulator.

Although they were discovered only about a decade ago, the study of sirtuins "has become one of the most promising areas of biomedicine," since they appear to be involved in promoting healthy aging and longevity. Suppression of this key host defense is considered a central feature of Alzheimer's disease, as shown in Reducing Glycotoxin Intake to Prevent Alzheimer's.

Autopsies of Alzheimer's victims reveal that loss of sirtuin activity is closely associated with the accumulation of the plaques and tangles in the brain that are characteristic of Alzheimer's disease. Sirtuin appears to activate pathways that steer the brain away from the formation of plaque and tangle proteins. "Because a decrease in sirtuin activity can clearly have deleterious effects" on nerve health, researchers are trying to come up with drugs to increase sirtuin activity, but why not just prevent its suppression in the first place?

Glycotoxins in our food suppress sirtuin activity, also known as advanced glycation end products, or AGE's. Our modern diet includes excessive AGE's, which can be neurotoxic. High levels in the blood may predict cognitive decline over time. If you measure the urine levels of glycotoxins flowing through the bodies of older adults, those with the highest levels went on to suffer the greatest cognitive decline over the subsequent nine years.

As we age, our brain literally shrinks. In our 60's and 70's, we lose an average of five cubic centimeters of total brain tissue volume every year, but some people lose more than others. Brain atrophy may be reduced in very healthy individuals, and a few people don't lose any brain at all. Normally we lose about 2% of brain volume every year, but that's just the average. Although the average brain loss for folks in their 70's and 80's was 2.1%, some lost more, some lost less, and some men and women lost none at all over a period of four years.

Researchers in Australia provided the first evidence linking AGEs with this kind of cerebral brain loss. So, limiting one's consumption of these compounds may end up having significant public health benefits. Because sirtuin deficiency is both preventable and reversible by dietary AGE reduction, a therapeutic strategy that includes eating less AGE's may offer a new strategy to combat the epidemic of Alzheimer's.

Some glycotoxins are produced internally, particularly in diabetics, but anyone can get them from smoking and eating, particularly foods high in fat and protein cooked at high temperatures. In my video, Avoiding a Sugary Grave, I listed the 15 foods most contaminated with glycotoxins; mostly chicken, but also pork, beef, and fish, which may help explain why those that eat the most meat may have triple the risk of getting dementia compared to long-time vegetarians. Note there are some relatively high fat and protein plant foods such as nuts and soy products, so I no longer recommend toasting nuts and would steer clear from roasted tofu.

I've covered advanced glycation end-products in Glycotoxins, Bacon, Eggs, and Gestational Diabetes During Pregnancy, and Why is Meat a Risk Factor for Diabetes?.

More on slowing brain aging in How to Slow Brain Aging By Two Years.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: lightwise © 123RF.com. This image has been modified.

Original Link

Reducing Glycotoxin Intake to Help Reduce Brain Loss

Reducing Glycotoxin Intake to Prevent Alzheimer's.jpg

Each of us has about six billion miles of DNA. How does our body keep it from getting all tangled up? There are special proteins called histones, which act like spools with DNA as the thread. Enzymes called sirtuins wrap the DNA around the histones and by doing so, silence whatever genes were in that stretch of DNA, hence their name SIRtuins, which stands for silencing information regulator.

Although they were discovered only about a decade ago, the study of sirtuins "has become one of the most promising areas of biomedicine," since they appear to be involved in promoting healthy aging and longevity. Suppression of this key host defense is considered a central feature of Alzheimer's disease, as shown in Reducing Glycotoxin Intake to Prevent Alzheimer's.

Autopsies of Alzheimer's victims reveal that loss of sirtuin activity is closely associated with the accumulation of the plaques and tangles in the brain that are characteristic of Alzheimer's disease. Sirtuin appears to activate pathways that steer the brain away from the formation of plaque and tangle proteins. "Because a decrease in sirtuin activity can clearly have deleterious effects" on nerve health, researchers are trying to come up with drugs to increase sirtuin activity, but why not just prevent its suppression in the first place?

Glycotoxins in our food suppress sirtuin activity, also known as advanced glycation end products, or AGE's. Our modern diet includes excessive AGE's, which can be neurotoxic. High levels in the blood may predict cognitive decline over time. If you measure the urine levels of glycotoxins flowing through the bodies of older adults, those with the highest levels went on to suffer the greatest cognitive decline over the subsequent nine years.

As we age, our brain literally shrinks. In our 60's and 70's, we lose an average of five cubic centimeters of total brain tissue volume every year, but some people lose more than others. Brain atrophy may be reduced in very healthy individuals, and a few people don't lose any brain at all. Normally we lose about 2% of brain volume every year, but that's just the average. Although the average brain loss for folks in their 70's and 80's was 2.1%, some lost more, some lost less, and some men and women lost none at all over a period of four years.

Researchers in Australia provided the first evidence linking AGEs with this kind of cerebral brain loss. So, limiting one's consumption of these compounds may end up having significant public health benefits. Because sirtuin deficiency is both preventable and reversible by dietary AGE reduction, a therapeutic strategy that includes eating less AGE's may offer a new strategy to combat the epidemic of Alzheimer's.

Some glycotoxins are produced internally, particularly in diabetics, but anyone can get them from smoking and eating, particularly foods high in fat and protein cooked at high temperatures. In my video, Avoiding a Sugary Grave, I listed the 15 foods most contaminated with glycotoxins; mostly chicken, but also pork, beef, and fish, which may help explain why those that eat the most meat may have triple the risk of getting dementia compared to long-time vegetarians. Note there are some relatively high fat and protein plant foods such as nuts and soy products, so I no longer recommend toasting nuts and would steer clear from roasted tofu.

I've covered advanced glycation end-products in Glycotoxins, Bacon, Eggs, and Gestational Diabetes During Pregnancy, and Why is Meat a Risk Factor for Diabetes?.

More on slowing brain aging in How to Slow Brain Aging By Two Years.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: lightwise © 123RF.com. This image has been modified.

Original Link

The Natural Human Diet

NF-Nov15 The Problem with the Paleo Diet Argument copy.jpg

Our epidemics of dietary disease have prompted a great deal of research into what humans are meant to eat for optimal health. In 1985, an influential article highlighted in my video The Problem With the Paleo Diet Argument was published proposing that our chronic diseases stem from a disconnect between what our bodies ate while evolving during the Stone Age (about 2 million years ago) and what we're stuffing our face with today. The proposal advocated for a return towards a hunter-gatherer type diet of lean meat, fruits, vegetables, and nuts.

It's reasonable to assume our nutritional requirements were established in the prehistoric past. However, the question of which prehistoric past we should emulate remains. Why just the last 2 million? We've been evolving for about 20 million years since our last common great ape ancestor, during which our nutrient requirements and digestive physiology were set down. Therefore our hunter-gatherer days at the tail end probably had little effect. What were we eating for the first 90% of our evolution? What the rest of the great apes ended up eating--95 percent or more plants.

This may explain why we're so susceptible to heart disease. For most of human evolution, cholesterol may have been virtually absent from the diet. No bacon, butter, or trans fats; and massive amounts of fiber, which pulls cholesterol from the body. This could have been a problem since our body needs a certain amount of cholesterol, but our bodies evolve not only to make cholesterol, but also to preserve it and recycle it.

If we think of the human body as a cholesterol-conserving machine, then plop it into the modern world of bacon, eggs, cheese, chicken, pork, and pastry; it's no wonder artery-clogging heart disease is our #1 cause of death. What used to be adaptive for 90% of our evolution--holding on to cholesterol at all costs since we weren't getting much in our diet--is today maladaptive, a liability leading to the clogging of our arteries. Our bodies just can't handle it.

As the editor-in-chief of the American Journal of Cardiology noted 25 years ago, no matter how much fat and cholesterol carnivores eat, they do not develop atherosclerosis. We can feed a dog 500 eggs worth of cholesterol and they just wag their tail; a dog's body is used to eating and getting rid of excess cholesterol. Conversely, within months a fraction of that cholesterol can start clogging the arteries of animals adapted to eating a more plant-based diet.

Even if our bodies were designed by natural selection to eat mostly fruit, greens and seeds for 90% of our evolution, why didn't we better adapt to meat-eating in the last 10%, during the Paleolithic? We've had nearly 2 million years to get used to all that extra saturated fat and cholesterol. If a lifetime of eating like that clogs up nearly everyone's arteries, why didn't the genes of those who got heart attacks die off and get replaced by those that could live to a ripe old age with clean arteries regardless of what they ate? Because most didn't survive into old age.

Most prehistoric peoples didn't live long enough to get heart attacks. When the average life expectancy is 25 years old, then the genes that get passed along are those that can live to reproductive age by any means necessary, and that means not dying of starvation. The more calories in food, the better. Eating lots of bone marrow and brains, human or otherwise, would have a selective advantage (as would discovering a time machine stash of Twinkies for that matter!). If we only have to live long enough to get our kids to puberty to pass along our genes, then we don't have to evolve any protections against the ravages of chronic disease.

To find a population nearly free of chronic disease in old age, we don't have to go back a million years. In the 20th century, networks of missionary hospitals in rural Africa found coronary artery disease virtually absent, and not just heart disease, but high blood pressure, stroke, diabetes, common cancers, and more. In a sense, these populations in rural China and Africa were eating the type of diet we've been eating for 90% of the last 20 million years, a diet almost exclusively of plant foods.

How do we know it was their diet and not something else? In the 25 year update to their original paleo paper, the authors tried to clarify that they did not then and do not now propose that people adopt a particular diet just based on what our ancient ancestors ate. Dietary recommendations must be put to the test. That's why the pioneering research from Pritikin, Ornish, and Esselstyn is so important, showing that plant-based diets can not only stop heart disease but have been proven to reverse it in the majority of patients. Indeed, it's the only diet that ever has.

For more on the absence of Western diseases in plant-based rural populations, see for example:

I've touched on "paleo" diets in the past:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nathan Rupert / Flickr

Original Link

The Natural Human Diet

NF-Nov15 The Problem with the Paleo Diet Argument copy.jpg

Our epidemics of dietary disease have prompted a great deal of research into what humans are meant to eat for optimal health. In 1985, an influential article highlighted in my video The Problem With the Paleo Diet Argument was published proposing that our chronic diseases stem from a disconnect between what our bodies ate while evolving during the Stone Age (about 2 million years ago) and what we're stuffing our face with today. The proposal advocated for a return towards a hunter-gatherer type diet of lean meat, fruits, vegetables, and nuts.

It's reasonable to assume our nutritional requirements were established in the prehistoric past. However, the question of which prehistoric past we should emulate remains. Why just the last 2 million? We've been evolving for about 20 million years since our last common great ape ancestor, during which our nutrient requirements and digestive physiology were set down. Therefore our hunter-gatherer days at the tail end probably had little effect. What were we eating for the first 90% of our evolution? What the rest of the great apes ended up eating--95 percent or more plants.

This may explain why we're so susceptible to heart disease. For most of human evolution, cholesterol may have been virtually absent from the diet. No bacon, butter, or trans fats; and massive amounts of fiber, which pulls cholesterol from the body. This could have been a problem since our body needs a certain amount of cholesterol, but our bodies evolve not only to make cholesterol, but also to preserve it and recycle it.

If we think of the human body as a cholesterol-conserving machine, then plop it into the modern world of bacon, eggs, cheese, chicken, pork, and pastry; it's no wonder artery-clogging heart disease is our #1 cause of death. What used to be adaptive for 90% of our evolution--holding on to cholesterol at all costs since we weren't getting much in our diet--is today maladaptive, a liability leading to the clogging of our arteries. Our bodies just can't handle it.

As the editor-in-chief of the American Journal of Cardiology noted 25 years ago, no matter how much fat and cholesterol carnivores eat, they do not develop atherosclerosis. We can feed a dog 500 eggs worth of cholesterol and they just wag their tail; a dog's body is used to eating and getting rid of excess cholesterol. Conversely, within months a fraction of that cholesterol can start clogging the arteries of animals adapted to eating a more plant-based diet.

Even if our bodies were designed by natural selection to eat mostly fruit, greens and seeds for 90% of our evolution, why didn't we better adapt to meat-eating in the last 10%, during the Paleolithic? We've had nearly 2 million years to get used to all that extra saturated fat and cholesterol. If a lifetime of eating like that clogs up nearly everyone's arteries, why didn't the genes of those who got heart attacks die off and get replaced by those that could live to a ripe old age with clean arteries regardless of what they ate? Because most didn't survive into old age.

Most prehistoric peoples didn't live long enough to get heart attacks. When the average life expectancy is 25 years old, then the genes that get passed along are those that can live to reproductive age by any means necessary, and that means not dying of starvation. The more calories in food, the better. Eating lots of bone marrow and brains, human or otherwise, would have a selective advantage (as would discovering a time machine stash of Twinkies for that matter!). If we only have to live long enough to get our kids to puberty to pass along our genes, then we don't have to evolve any protections against the ravages of chronic disease.

To find a population nearly free of chronic disease in old age, we don't have to go back a million years. In the 20th century, networks of missionary hospitals in rural Africa found coronary artery disease virtually absent, and not just heart disease, but high blood pressure, stroke, diabetes, common cancers, and more. In a sense, these populations in rural China and Africa were eating the type of diet we've been eating for 90% of the last 20 million years, a diet almost exclusively of plant foods.

How do we know it was their diet and not something else? In the 25 year update to their original paleo paper, the authors tried to clarify that they did not then and do not now propose that people adopt a particular diet just based on what our ancient ancestors ate. Dietary recommendations must be put to the test. That's why the pioneering research from Pritikin, Ornish, and Esselstyn is so important, showing that plant-based diets can not only stop heart disease but have been proven to reverse it in the majority of patients. Indeed, it's the only diet that ever has.

For more on the absence of Western diseases in plant-based rural populations, see for example:

I've touched on "paleo" diets in the past:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nathan Rupert / Flickr

Original Link