Fish Consumption and Suicide

Sept 12 Fish Consumption copy.jpeg

Depression is a serious and common mental disorder responsible for the majority of suicides. As I've covered in Antioxidants & Depression, intake of fruits, vegetables, and naturally occurring antioxidants have been found to be protectively associated with depression. Therefore, researchers have considered that "it may be possible to prevent depression or to lessen its negative effects through dietary intervention."

But not so fast. Cross-sectional studies are snapshots in time, so we don't know "whether a poor dietary pattern precedes the development of depression or if depression causes poor dietary intake." Depression and even treatments for depression can affect appetite and dietary intake. Maybe people who feel crappier just eat crappier, instead of the other way around.

What we need is a prospective study (a study performed over time) where we start out with people who are not depressed and follow them for several years. In 2012, we got just such a study, which ran over six years. As you'll see in my video Fish Consumption and Suicide, those with higher carotenoid levels in their bloodstream, which is considered a good indicator of fruit and vegetable intake, had a 28% lower risk of becoming depressed within that time. The researchers conclude that having low blood levels of those healthy phytonutrients may predict the development of new depressive symptoms. What about suicide?

Worldwide, a million people kill themselves every year. Of all European countries, Greece appears to have the lowest rates of suicide. It may be the balmy weather, but it may also have something to do with their diet. Ten thousand people were followed for years, and those following a more Mediterranean diet pattern were less likely to be diagnosed with depression. What was it about the diet that was protective? It wasn't the red wine or fish; it was the fruit, nuts, beans, and effectively higher plant to animal fat ratio that appeared protective. Conversely, significant adverse trends were observed for dairy and meat consumption.

A similar protective dietary pattern was found in Japan. A high intake of vegetables, fruits, mushrooms, and soy products was associated with a decreased prevalence of depressive symptoms. The healthy dietary pattern was not characterized by a high intake of seafood. Similar results were found in a study of 100,000 Japanese men and women followed for up to 10 years. There was no evidence of a protective role of higher fish consumption or the long-chain omega 3s EPA and DHA against suicide. In fact, they found a significantly increased risk of suicide among male nondrinkers with high seafood omega 3 intake. This may have been by chance, but a similar result was found in the Mediterranean. High baseline fish consumption with an increase in consumption were associated with an increased risk of mental disorders.

One possible explanation could be the mercury content of fish. Could an accumulation of mercury compounds in the body increase the risk of depression? We know that mercury in fish can cause neurological damage, associated with increased risk of Alzheimer's disease, memory loss, and autism, but also depression. Therefore, "the increased risk of suicide among persons with a high fish intake might also be attributable to the harmful effects of mercury in fish."

Large Harvard University cohort studies found similar results. Hundreds of thousands were followed for up to 20 years, and no evidence was found that taking fish oil or eating fish lowered risk of suicide. There was even a trend towards higher suicide mortality.

What about fish consumption for the treatment of depression? When we put together all the trials done to date, neither the EPA nor DHA long-chain omega-3s appears more effective than sugar pills. We used to think omega-3 supplementation was useful, but several recent studies have tipped the balance the other way. It seems that "[n]early all of the treatment efficacy observed in the published literature may be attributable to publication bias," meaning the trials that showed no benefit tended not to get published at all. So, all doctors saw were a bunch of positive studies, but only because a bunch of the negative ones were buried.

This reminds me of my Is Fish Oil Just Snake Oil? video. Just like we thought omega-3 supplementation could help with mood, we also thought it could help with heart health, but the balance of evidence has decidedly shifted. I still recommend the consumption of pollutant-free sources of preformed long-chain omega 3s for cognitive health and explain my rationale in Should We Take DHA Supplements to Boost Brain Function? and Should Vegans Take DHA to Preserve Brain Function?


For more on the neurotoxic nature of mercury-contaminated seafood, see:

What can we do to help our mood? See:

What about antidepressant drugs? Sometimes they can be absolutely life-saving, but other times they may actually do more harm than good. See my controversial video Do Antidepressant Drugs Really Work?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Fish Consumption and Suicide

Sept 12 Fish Consumption copy.jpeg

Depression is a serious and common mental disorder responsible for the majority of suicides. As I've covered in Antioxidants & Depression, intake of fruits, vegetables, and naturally occurring antioxidants have been found to be protectively associated with depression. Therefore, researchers have considered that "it may be possible to prevent depression or to lessen its negative effects through dietary intervention."

But not so fast. Cross-sectional studies are snapshots in time, so we don't know "whether a poor dietary pattern precedes the development of depression or if depression causes poor dietary intake." Depression and even treatments for depression can affect appetite and dietary intake. Maybe people who feel crappier just eat crappier, instead of the other way around.

What we need is a prospective study (a study performed over time) where we start out with people who are not depressed and follow them for several years. In 2012, we got just such a study, which ran over six years. As you'll see in my video Fish Consumption and Suicide, those with higher carotenoid levels in their bloodstream, which is considered a good indicator of fruit and vegetable intake, had a 28% lower risk of becoming depressed within that time. The researchers conclude that having low blood levels of those healthy phytonutrients may predict the development of new depressive symptoms. What about suicide?

Worldwide, a million people kill themselves every year. Of all European countries, Greece appears to have the lowest rates of suicide. It may be the balmy weather, but it may also have something to do with their diet. Ten thousand people were followed for years, and those following a more Mediterranean diet pattern were less likely to be diagnosed with depression. What was it about the diet that was protective? It wasn't the red wine or fish; it was the fruit, nuts, beans, and effectively higher plant to animal fat ratio that appeared protective. Conversely, significant adverse trends were observed for dairy and meat consumption.

A similar protective dietary pattern was found in Japan. A high intake of vegetables, fruits, mushrooms, and soy products was associated with a decreased prevalence of depressive symptoms. The healthy dietary pattern was not characterized by a high intake of seafood. Similar results were found in a study of 100,000 Japanese men and women followed for up to 10 years. There was no evidence of a protective role of higher fish consumption or the long-chain omega 3s EPA and DHA against suicide. In fact, they found a significantly increased risk of suicide among male nondrinkers with high seafood omega 3 intake. This may have been by chance, but a similar result was found in the Mediterranean. High baseline fish consumption with an increase in consumption were associated with an increased risk of mental disorders.

One possible explanation could be the mercury content of fish. Could an accumulation of mercury compounds in the body increase the risk of depression? We know that mercury in fish can cause neurological damage, associated with increased risk of Alzheimer's disease, memory loss, and autism, but also depression. Therefore, "the increased risk of suicide among persons with a high fish intake might also be attributable to the harmful effects of mercury in fish."

Large Harvard University cohort studies found similar results. Hundreds of thousands were followed for up to 20 years, and no evidence was found that taking fish oil or eating fish lowered risk of suicide. There was even a trend towards higher suicide mortality.

What about fish consumption for the treatment of depression? When we put together all the trials done to date, neither the EPA nor DHA long-chain omega-3s appears more effective than sugar pills. We used to think omega-3 supplementation was useful, but several recent studies have tipped the balance the other way. It seems that "[n]early all of the treatment efficacy observed in the published literature may be attributable to publication bias," meaning the trials that showed no benefit tended not to get published at all. So, all doctors saw were a bunch of positive studies, but only because a bunch of the negative ones were buried.

This reminds me of my Is Fish Oil Just Snake Oil? video. Just like we thought omega-3 supplementation could help with mood, we also thought it could help with heart health, but the balance of evidence has decidedly shifted. I still recommend the consumption of pollutant-free sources of preformed long-chain omega 3s for cognitive health and explain my rationale in Should We Take DHA Supplements to Boost Brain Function? and Should Vegans Take DHA to Preserve Brain Function?


For more on the neurotoxic nature of mercury-contaminated seafood, see:

What can we do to help our mood? See:

What about antidepressant drugs? Sometimes they can be absolutely life-saving, but other times they may actually do more harm than good. See my controversial video Do Antidepressant Drugs Really Work?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Fish Consumption and Suicide

Sept 12 Fish Consumption copy.jpeg

Depression is a serious and common mental disorder responsible for the majority of suicides. As I've covered in Antioxidants & Depression, intake of fruits, vegetables, and naturally occurring antioxidants have been found to be protectively associated with depression. Therefore, researchers have considered that "it may be possible to prevent depression or to lessen its negative effects through dietary intervention."

But not so fast. Cross-sectional studies are snapshots in time, so we don't know "whether a poor dietary pattern precedes the development of depression or if depression causes poor dietary intake." Depression and even treatments for depression can affect appetite and dietary intake. Maybe people who feel crappier just eat crappier, instead of the other way around.

What we need is a prospective study (a study performed over time) where we start out with people who are not depressed and follow them for several years. In 2012, we got just such a study, which ran over six years. As you'll see in my video Fish Consumption and Suicide, those with higher carotenoid levels in their bloodstream, which is considered a good indicator of fruit and vegetable intake, had a 28% lower risk of becoming depressed within that time. The researchers conclude that having low blood levels of those healthy phytonutrients may predict the development of new depressive symptoms. What about suicide?

Worldwide, a million people kill themselves every year. Of all European countries, Greece appears to have the lowest rates of suicide. It may be the balmy weather, but it may also have something to do with their diet. Ten thousand people were followed for years, and those following a more Mediterranean diet pattern were less likely to be diagnosed with depression. What was it about the diet that was protective? It wasn't the red wine or fish; it was the fruit, nuts, beans, and effectively higher plant to animal fat ratio that appeared protective. Conversely, significant adverse trends were observed for dairy and meat consumption.

A similar protective dietary pattern was found in Japan. A high intake of vegetables, fruits, mushrooms, and soy products was associated with a decreased prevalence of depressive symptoms. The healthy dietary pattern was not characterized by a high intake of seafood. Similar results were found in a study of 100,000 Japanese men and women followed for up to 10 years. There was no evidence of a protective role of higher fish consumption or the long-chain omega 3s EPA and DHA against suicide. In fact, they found a significantly increased risk of suicide among male nondrinkers with high seafood omega 3 intake. This may have been by chance, but a similar result was found in the Mediterranean. High baseline fish consumption with an increase in consumption were associated with an increased risk of mental disorders.

One possible explanation could be the mercury content of fish. Could an accumulation of mercury compounds in the body increase the risk of depression? We know that mercury in fish can cause neurological damage, associated with increased risk of Alzheimer's disease, memory loss, and autism, but also depression. Therefore, "the increased risk of suicide among persons with a high fish intake might also be attributable to the harmful effects of mercury in fish."

Large Harvard University cohort studies found similar results. Hundreds of thousands were followed for up to 20 years, and no evidence was found that taking fish oil or eating fish lowered risk of suicide. There was even a trend towards higher suicide mortality.

What about fish consumption for the treatment of depression? When we put together all the trials done to date, neither the EPA nor DHA long-chain omega-3s appears more effective than sugar pills. We used to think omega-3 supplementation was useful, but several recent studies have tipped the balance the other way. It seems that "[n]early all of the treatment efficacy observed in the published literature may be attributable to publication bias," meaning the trials that showed no benefit tended not to get published at all. So, all doctors saw were a bunch of positive studies, but only because a bunch of the negative ones were buried.

This reminds me of my Is Fish Oil Just Snake Oil? video. Just like we thought omega-3 supplementation could help with mood, we also thought it could help with heart health, but the balance of evidence has decidedly shifted. I still recommend the consumption of pollutant-free sources of preformed long-chain omega 3s for cognitive health and explain my rationale in Should We Take DHA Supplements to Boost Brain Function? and Should Vegans Take DHA to Preserve Brain Function?


For more on the neurotoxic nature of mercury-contaminated seafood, see:

What can we do to help our mood? See:

What about antidepressant drugs? Sometimes they can be absolutely life-saving, but other times they may actually do more harm than good. See my controversial video Do Antidepressant Drugs Really Work?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Comparing Pollutant Levels Between Different Diets

Comparing Pollutant Levels Between Different Diets.jpeg

The results of the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study were published recently. This study of a California birth cohort investigated the relationship between exposure to flame retardant chemical pollutants in pregnancy and childhood, and subsequent neurobehavioral development. Why California? Because California children's exposures to these endocrine disruptors and neurotoxins are among the highest in the world.

What did they find? The researchers concluded that both prenatal and childhood exposures to these chemicals "were associated with poorer attention, fine motor coordination, and cognition" (particularly verbal comprehension) by the time the children reached school age. "This study, the largest to date, contributes to growing evidence suggesting that PBDEs [polybrominated diphenyl ethers, flame retardant chemicals] have adverse impacts on child neurobehavioral development." The effects may extend into adolescence, again affecting motor function as well as thyroid gland function. The effect on our thyroid glands may even extend into adulthood.

These chemicals get into moms, then into the amniotic fluid, and then into the breast milk. The more that's in the milk, the worse the infants' mental development may be. Breast milk is still best, but how did these women get exposed in the first place?

The question has been: Are we exposed mostly from diet or dust? Researchers in Boston collected breast milk samples from 46 first-time moms, vacuumed up samples of dust from their homes, and questioned them about their diets. The researchers found that both were likely to blame. Diet-wise, a number of animal products were implicated. This is consistent with what's been found worldwide. For example, in Europe, these flame retardant chemical pollutants are found mostly in meat, including fish, and other animal products. It's similar to what we see with dioxins--they are mostly found in fish and other fatty foods, with a plant-based diet offering the lowest exposure.

If that's the case, do vegetarians have lower levels of flame retardant chemical pollutants circulating in their bloodstreams? Yes. Vegetarians may have about 25% lower levels. Poultry appears to be the largest contributor of PBDEs. USDA researchers compared the levels in different meats, and the highest levels of these pollutants were found in chicken and turkey, with less in pork and even less in beef. California poultry had the highest, consistent with strict furniture flammability codes. But it's not like chickens are pecking at the sofa. Chickens and turkeys may be exposed indirectly through the application of sewer sludge to fields where feed crops are raised, contamination of water supplies, the use of flame-retarded materials in poultry housing, or the inadvertent incorporation of fire-retardant material into the birds' bedding or feed ingredients.

Fish have been shown to have the highest levels overall, but Americans don't eat a lot of fish so they don't contribute as much to the total body burden in the United States. Researchers have compared the level of PBDEs found in meat-eaters and vegetarians. The amount found in the bloodstream of vegetarians is noticeably lower, as you can see in my video Flame Retardant Pollutants and Child Development. Just to give you a sense of the contribution of chicken, higher than average poultry eaters have higher levels than omnivores as a whole, and lower than average poultry eaters have levels lower than omnivores.

What are the PBDE levels in vegans? We know the intake of many other classes of pollutants is almost exclusively from the ingestion of animal fats in the diet. What if we take them all out of the diet? It works for dioxins. Vegan dioxin levels appear markedly lower than the general population. What about for the flame retardant chemicals? Vegans have levels lower than vegetarians, with those who've been vegan around 20 years having even lower concentrations. This tendency for chemical levels to decline the longer one eats plant-based suggests that food of animal origin contributes substantially. But note that levels never get down to zero, so diet is not the only source.

The USDA researchers note that there are currently no regulatory limits on the amount of flame retardant chemical contamination in U.S. foods, "but reducing the levels of unnecessary, persistent, toxic compounds in our diet is certainly desirable."

I've previously talked about this class of chemicals in Food Sources of Flame Retardant Chemicals. The same foods seem to accumulate a variety of pollutants:

Many of these chemicals have hormone- or endocrine-disrupting effects. See, for example:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Mitchell Haindfield / Flickr. This image has been modified.

Original Link

Comparing Pollutant Levels Between Different Diets

Comparing Pollutant Levels Between Different Diets.jpeg

The results of the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study were published recently. This study of a California birth cohort investigated the relationship between exposure to flame retardant chemical pollutants in pregnancy and childhood, and subsequent neurobehavioral development. Why California? Because California children's exposures to these endocrine disruptors and neurotoxins are among the highest in the world.

What did they find? The researchers concluded that both prenatal and childhood exposures to these chemicals "were associated with poorer attention, fine motor coordination, and cognition" (particularly verbal comprehension) by the time the children reached school age. "This study, the largest to date, contributes to growing evidence suggesting that PBDEs [polybrominated diphenyl ethers, flame retardant chemicals] have adverse impacts on child neurobehavioral development." The effects may extend into adolescence, again affecting motor function as well as thyroid gland function. The effect on our thyroid glands may even extend into adulthood.

These chemicals get into moms, then into the amniotic fluid, and then into the breast milk. The more that's in the milk, the worse the infants' mental development may be. Breast milk is still best, but how did these women get exposed in the first place?

The question has been: Are we exposed mostly from diet or dust? Researchers in Boston collected breast milk samples from 46 first-time moms, vacuumed up samples of dust from their homes, and questioned them about their diets. The researchers found that both were likely to blame. Diet-wise, a number of animal products were implicated. This is consistent with what's been found worldwide. For example, in Europe, these flame retardant chemical pollutants are found mostly in meat, including fish, and other animal products. It's similar to what we see with dioxins--they are mostly found in fish and other fatty foods, with a plant-based diet offering the lowest exposure.

If that's the case, do vegetarians have lower levels of flame retardant chemical pollutants circulating in their bloodstreams? Yes. Vegetarians may have about 25% lower levels. Poultry appears to be the largest contributor of PBDEs. USDA researchers compared the levels in different meats, and the highest levels of these pollutants were found in chicken and turkey, with less in pork and even less in beef. California poultry had the highest, consistent with strict furniture flammability codes. But it's not like chickens are pecking at the sofa. Chickens and turkeys may be exposed indirectly through the application of sewer sludge to fields where feed crops are raised, contamination of water supplies, the use of flame-retarded materials in poultry housing, or the inadvertent incorporation of fire-retardant material into the birds' bedding or feed ingredients.

Fish have been shown to have the highest levels overall, but Americans don't eat a lot of fish so they don't contribute as much to the total body burden in the United States. Researchers have compared the level of PBDEs found in meat-eaters and vegetarians. The amount found in the bloodstream of vegetarians is noticeably lower, as you can see in my video Flame Retardant Pollutants and Child Development. Just to give you a sense of the contribution of chicken, higher than average poultry eaters have higher levels than omnivores as a whole, and lower than average poultry eaters have levels lower than omnivores.

What are the PBDE levels in vegans? We know the intake of many other classes of pollutants is almost exclusively from the ingestion of animal fats in the diet. What if we take them all out of the diet? It works for dioxins. Vegan dioxin levels appear markedly lower than the general population. What about for the flame retardant chemicals? Vegans have levels lower than vegetarians, with those who've been vegan around 20 years having even lower concentrations. This tendency for chemical levels to decline the longer one eats plant-based suggests that food of animal origin contributes substantially. But note that levels never get down to zero, so diet is not the only source.

The USDA researchers note that there are currently no regulatory limits on the amount of flame retardant chemical contamination in U.S. foods, "but reducing the levels of unnecessary, persistent, toxic compounds in our diet is certainly desirable."

I've previously talked about this class of chemicals in Food Sources of Flame Retardant Chemicals. The same foods seem to accumulate a variety of pollutants:

Many of these chemicals have hormone- or endocrine-disrupting effects. See, for example:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Mitchell Haindfield / Flickr. This image has been modified.

Original Link

Foods that Affect Testosterone Levels

Foods that Affect Testosterone Levels.jpeg

A number of studies suggest that exposure to industrial pollutants may affect sexual function, for example, loss of libido, sexual dysfunction, and impotence. This may be due to effects on testosterone levels. In a study of men who ate a lot of contaminated fish, an elevation in PCB levels in the blood was associated with a lower concentration of testosterone levels. These pollutants are found predominantly in fish, but also meat and dairy. The lowest levels are found in plants (see Dietary Pollutants May Affect Testosterone Levels).

Testosterone doesn't just play a role in the determination of secondary sex characteristics like facial hair at puberty. It also regulates normal sexual functioning and the overall physical and psychological well-being of adult men. Abnormally low levels of testosterone can lead to decreased physical endurance and memory capacity, loss of libido, drop in sperm count, loss of bone density, obesity, and depression.

Endocrine-disrupting compounds that build up in fish may be able to mimic or block hormone receptors, or alter rates of synthesis or breakdown of sex steroid hormones. In children, these pollutants may actually impair sexual development. Boys who are exposed may grow up with smaller penises (although only by about two-thirds of an inch shorter at most). Researchers have tried exposing cells from aborted fetal human penises to these kinds of dietary pollutants, and gene expression related to genital development is indeed affected at real-life exposure levels. We're not sure if the effects on penis length are due to the pro-estrogenic effects of the toxins, though, or the anti-testosterone effects.

You've heard of save the whales? Well, male reproductive organs may be at risk from environmental hazards as well.

I previously addressed how we discovered the endocrine disruptor phenomenon in Alkylphenol Endocrine Disruptors and Allergies, as well as where they're found (Dietary Sources of Alkylphenol Endocrine Disruptors).

For more on sustaining male virility, see Male Fertility and Diet, The Role of Diet in Declining Sperm Counts, and Dairy Estrogen and Male Fertility.

I've talked about the role a plastics chemical may play in male sexual functioning (BPA Plastic and Male Sexual Dysfunction). But it's not just toxins, it's the total diet (Survival of the Firmest: Erectile Dysfunction and Death), and not only in men (Cholesterol and Female Sexual Dysfunction). My latest on the topic is Best Foods to Improve Sexual Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. Image has been modified.

Original Link

Foods that Affect Testosterone Levels

Foods that Affect Testosterone Levels.jpeg

A number of studies suggest that exposure to industrial pollutants may affect sexual function, for example, loss of libido, sexual dysfunction, and impotence. This may be due to effects on testosterone levels. In a study of men who ate a lot of contaminated fish, an elevation in PCB levels in the blood was associated with a lower concentration of testosterone levels. These pollutants are found predominantly in fish, but also meat and dairy. The lowest levels are found in plants (see Dietary Pollutants May Affect Testosterone Levels).

Testosterone doesn't just play a role in the determination of secondary sex characteristics like facial hair at puberty. It also regulates normal sexual functioning and the overall physical and psychological well-being of adult men. Abnormally low levels of testosterone can lead to decreased physical endurance and memory capacity, loss of libido, drop in sperm count, loss of bone density, obesity, and depression.

Endocrine-disrupting compounds that build up in fish may be able to mimic or block hormone receptors, or alter rates of synthesis or breakdown of sex steroid hormones. In children, these pollutants may actually impair sexual development. Boys who are exposed may grow up with smaller penises (although only by about two-thirds of an inch shorter at most). Researchers have tried exposing cells from aborted fetal human penises to these kinds of dietary pollutants, and gene expression related to genital development is indeed affected at real-life exposure levels. We're not sure if the effects on penis length are due to the pro-estrogenic effects of the toxins, though, or the anti-testosterone effects.

You've heard of save the whales? Well, male reproductive organs may be at risk from environmental hazards as well.

I previously addressed how we discovered the endocrine disruptor phenomenon in Alkylphenol Endocrine Disruptors and Allergies, as well as where they're found (Dietary Sources of Alkylphenol Endocrine Disruptors).

For more on sustaining male virility, see Male Fertility and Diet, The Role of Diet in Declining Sperm Counts, and Dairy Estrogen and Male Fertility.

I've talked about the role a plastics chemical may play in male sexual functioning (BPA Plastic and Male Sexual Dysfunction). But it's not just toxins, it's the total diet (Survival of the Firmest: Erectile Dysfunction and Death), and not only in men (Cholesterol and Female Sexual Dysfunction). My latest on the topic is Best Foods to Improve Sexual Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. Image has been modified.

Original Link

Estrogen in Meat, Dairy, and Eggs

Sept13.jpg

Estrogen hormones can be thousands of times more estrogenic than typical endocrine-disrupting chemicals. Dietary exposure to natural sex steroids (in meat, dairy, and eggs) is "therefore highly relevant in the discussion of the impact of estrogens on human development and health." And chicken estrogen is identical to human estrogen--they're identical molecules. So it doesn't matter if it ends up in our drinking supply from women taking birth control pills excreting it in their urine, or cows excreting it into their milk. The source doesn't matter; the quantity does.

If you check out my video Estrogen in Meat, Dairy, and Eggs, you can see that a child's exposure to estrogens in drinking water is about 150 times lower than exposure from cow's milk, so our day-to-day estrogen exposure levels are more likely determined by whether or not we happen to eat dairy products that day.

Human urine is "often cited as the main source of natural and synthetic estrogens in the aquatic environment," but the level of estrogen even in the urine of heavy meat-eaters, who have significantly higher levels, pales in comparison to the estrogen excreted by the farm animals themselves. Pig, sheep, cattle, and chickens produce literally tons of estrogen every year.

Women may excrete 16 mg every day, but farm animals may release ten times more, or in the case of pregnant cows, thousands of times more. Animal waste may contribute an estimated 90% of total estrogens in the environment. Five gallons of runoff water contaminated with chicken manure may contain a birth control pill's worth of estrogen.

Estrogen levels in poultry litter are so high that when farmers feed chicken manure to their animals to save on feed costs, it may trigger premature development. Poultry manure has among the highest hormone content, quadruple the total estrogens, and nine times more 17-beta estradiol, the most potent estrogen and a "complete" carcinogen, as it exerts both tumor initiating and tumor promoting effects.

From a human health standpoint, do we really care about feminized fish, or the appearance of "intersex roaches"? The problem is that the hormones get into the food supply. Endogenous steroid hormones in food of animal origin are unavoidable as they occur naturally in these products. It's not a matter of injected hormones, which are banned in places like Europe in order to protect consumers' health. Sex steroid hormones are part of animal metabolism, and so all foodstuffs of animal origin contain these hormones, which have been connected with several human health problems. (See Why Do Vegan Women Have 5x Fewer Twins?)

What effects might these female hormones have on men? See Dairy Estrogen and Male Fertility.

The implications of this relatively new practice of milking cows even when they're pregnant is further explored in:

More on xenoestrogens in:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Image Credit: BruceBlaus

Image Credit: [Nakhorn Yuangkratoke] © 123RF.com

Original Link

Dietary Estrogens and Male Fertility

NF-June16.jpeg

In my video, The Role of Diet in Declining Sperm Counts, I discussed the association between high saturated fat intake and reduced semen quality. But what's the connection? One of the most recent papers on the topic found that a significant percentage of the saturated fat intake in the study was derived from dairy products. Residues of industrial chemicals may bioaccumulate up the food chain into animal fat, and some of these lipophilic (fat-loving) chemicals may have hormone-disrupting abilities.

The U.S. Environmental Protection Agency performed a national survey of persistent, bioaccumulative, and toxic pollutants in the U.S. milk supply (highlighted in my video, Dairy Estrogen and Male Fertility). The EPA team noted that since milk fat is likely to be among the highest dietary sources of exposure to these pollutants, it's important to understand the levels in the dairy supply. The team tested milk from all over the country and found a veritable witches brew of chemicals. They estimate that dairy products alone contribute about 30% to 50% of our dioxin exposure. And "like dioxin, other toxic pollutants tend to be widely dispersed in the environment, bioaccumulated through the food chain and ultimately result in low-level contamination in most animal fats."

This may explain higher pollutant concentrations in fish eaters. Xenoestrogens like polychlorinated biphenyls (PCBs) are associated with the fats of fish or animal flesh and cannot be fully removed by washing and cooking, and so can accumulate in our fat, too. Xenoestrogens are chemicals with demasculinizing or feminizing effects. But even in a non-polluted world, animal foods also have actual estrogen, which are unavoidable constituents of animal products. All foodstuff of animal origin contains estradiol, which is at least 10,000-fold more potent than most xenoestrogens. Dietary exposure--meat, dairy products and eggs--to these natural sex steroids is therefore highly relevant, as the hormones in these animals are identical to our own.

Estrogens are present in meat and eggs, but the major sources are milk and dairy products. By drinking a glass of milk, a child's intake of estradiol is 4,000 times the intake of xenoestrogens in terms of hormone activity. Modern genetically-improved dairy cows can lactate throughout their pregnancy. The problem is that during pregnancy, estrogen levels can jump as much as 30-fold.

Cheese intake has specifically been associated with lower sperm concentration, whereas dairy food intake in general has been associated with abnormal sperm shape and movement. Lower sperm concentrations by themselves may just represent a potential suppression of sperm production due to higher estrogen levels, but abnormal shape and movement suggests that dairy intake may be implicated in actual direct testicular damage.

While milk products supply most of our ingested female sex steroids, eggs are a considerable source as well, contributing about as much as meat and fish. This could be expected, as eggs are produced directly in the hens' ovaries.

Meat may also contain added hormones. In the U.S. anabolic sex steroids may be administered to animals for growth promotion, a practice banned in Europe twenty-five years ago. A study in New York found progressively lower sperm counts associated with processed meat consumption. However, similar studies in Europe after the ban found the same thing, so it may not be the implanted hormones, but rather a consequence of other meat components, such as the saturated fat raising cholesterol levels.

We've known for decades that men with high cholesterol levels show abnormalities in their "spermiograms": decreased sperm concentration, about a third of the normal sperm movement, and half the normal sperm shape. Twenty-five years later, we're finding the same thing. In the largest study to date, higher blood cholesterol levels were associated with a significantly lower percentage of normal sperm. Cholesterol was also associated with reductions in semen volume and live sperm count. These results highlight the role of fats in the blood in male fertility, and should be of concern given the rising prevalence of obesity and cholesterol problems. Although a healthier diet may be associated with healthier sperm counts, cholesterol-lowering statin drugs do not seem to help.

What about the phytoestrogens in soy? See The Effect of Soy on Precocious Puberty.

More on hormones in dairy in:

Neurotoxic chemicals in the dairy supply have been blamed for neurological conditions as well. See my video Preventing Parkinson's Disease with Diet.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Taber Andrew Bain / Flickr

Original Link

Children’s Supplements Found Contaminated With Pollutants

NF-May19 PCBs in Children's Fish Oil Supplements.jpeg

A number of case-control studies have found that giving kids cod liver oil supplements may increase their risk of asthma later in life. Case-control studies are done by asking about past behavior in cases (those with asthma) versus controls (those without asthma) to see if certain past behaviors are more likely among the disease group. The problem is that asking people to remember what they were doing years ago, when most people can't remember what they had for breakfast last week, is unreliable. When interpreting the results from case-control studies, we also can't rule out something called reverse causation. Maybe cod liver oil doesn't lead to asthma, but asthma led to the use of cod liver oil.

It would therefore be nice to see a cohort study. In a cohort study, researchers would take people without asthma and follow them over time to see if those taking cod liver oil are more likely to develop it. Because people without the disease and their diets are followed over time, cohort studies bypass the problems of recall bias and reverse causation.

In 2013, we finally got one such study. 17,000 people free of asthma were followed over 11 years. Researchers knew who was taking cod liver oil and who wasn't, and then sat back and watched to see who got asthma over the subsequent 11 years. The researchers found that cod liver oil intake was indeed significantly associated with the development of asthma. They thought it might be the excessive vitamin A in the cod liver oil that was causing the problem, but there are also a number of substances in fish oil we may not want our children exposed to.

Researchers from Philadelphia University, highlighted in my video PCBs in Children's Fish Oil Supplements, recently looked at 13 over-the-counter children's dietary supplements containing fish oil to assess potential exposure to PCBs, toxic industrial pollutants that have contaminated our oceans. PCBs were detected in all products. Could we just stick to the supplements made from small, short-lived fish like anchovies instead of big predator fish like tuna to reduce the impact of biomagnification? Or use purified fish oils? No, the researchers found no significant difference in PCB levels whether the supplements were labeled as molecularly distilled or how high up the food chain the fish were.

The researchers concluded that while children's dietary supplements containing the long-chain omega-3's from fish oils may claim to benefit young consumers, "daily ingestion of these products may provide a vector for contaminant exposure that may off-set the positive health effects." What positive health benefits are they talking about?

Researchers publishing in the journal, Early Human Development, found that infants given DHA-fortified formula may have better development of their eyes and brains compared to infants getting non DHA-fortified formula. What was the source of the DHA? Not fish, but algae-derived DHA. In that way we can get the benefits of omega 3's without the contaminant risks. But of course, breast milk is the gold standard, significantly better than either of the formula fed infants. So the best source of omega-3's is mom.

It's bad enough when supplement manufacturers exploit adults when they're sick and vulnerable with pills that are often useless or worse, but taking advantage of our parental drive to do what's best for our children with contaminated products that may make them sick, makes me sick.

More on supplements in:

And speaking of which, Is Fish Oil Just Snake Oil?

Also check out these videos on fish oil and DHA: Omega-3's and the Eskimo Fish Tale and Should We Take EPA and DHA Omega-3 For Our Heart?

What about omega 3's for our child's growing brain? See my video Mercury vs. Omega-3s for Brain Development

We can also be exposed to PCBs in food. See Food Sources of PCB Chemical Pollutants.

More on the polluted aquatic food chain in:

What can we do to lower the risk of childhood asthma and other allergic-type diseases? See:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Lars Plougmann / Flickr

Original Link