9 out of 10 That Die From it Never Knew They Even Had This Preventable Disease

9 out of 10 That Die From it Never Knew They Even Had This Preventable Disease.jpeg

Diverticula are out-pouchings of our intestine. Doctors like using a tire analogy: high pressures within the gut can force the intestines to balloon out through weak spots in the intestinal wall like an inner tube poking out through a worn tire tread. You can see what they actually look like in my video, Diverticulosis: When Our Most Common Gut Disorder Hardly Existed. These pockets can become inflamed and infected, and, to carry the tire analogy further, can blow out and spill fecal matter into the abdomen, and lead to death. Symptoms can range from no symptoms at all, to a little cramping and bloating, to "incapacitating pain that is a medical emergency." Nine out of ten people who die from the disease never even knew they had it.

The good news is there may be a way to prevent the disease. Diverticular disease is the most common intestinal disorder, affecting up to 70% of people by age 60. If it's that common, though, is it just an inevitable consequence of aging? No, it's a new disease. In 1907, 25 cases had been reported in the medical literature. Not cases in 25% of people, but 25 cases period. And diverticular disease is kind of hard to miss on autopsy. A hundred years ago, in 1916, it didn't even merit mention in medical and surgical textbooks. The mystery wasn't solved until 1971.

How did a disease that was almost unknown become the most common affliction of the colon in the Western world within one lifespan? Surgeons Painter and Burkitt suggested diverticulosis was a deficiency disease--i.e., a disease caused by a deficiency of fiber. In the late 1800s, roller milling was introduced, further removing fiber from grain, and we started to fill up on other fiber-deficient foods like meat and sugar. A few decades of this and diverticulosis was rampant.

This is what Painter and Burkitt thought was going on: Just as it would be easy to squeeze a lump of butter through a bicycle tube, it's easy to move large, soft, and moist intestinal contents through the gut. In contrast, try squeezing through a lump of tar. When we eat fiber-deficient diets, our feces can become small and firm, and our intestines have to really squeeze down hard to move them along. This buildup of pressure may force out those bulges. Eventually, a low-fiber diet can sometimes lead to the colon literally rupturing itself.

If this theory is true, then populations eating high­-fiber diets would have low rates of diverticulosis. That's exactly what's been found. More than 50% of African Americans in their 50s were found to have diverticulosis, compared to less than 1% in African Africans eating traditional plant-based diets. By less than 1%, we're talking zero out of a series of 2,000 autopsies in South Africa and two out of 4,000 in Uganda. That's about one thousand times lower prevalence.

What, then, do we make of a new study concluding that a low-fiber diet was not associated with diverticulosis. I cover that in my video Does Fiber Really Prevent Diverticulosis?

For more on bowel health, see:

What if your doctor says you shouldn't eat healthy foods like nuts and popcorn because of your diverticulosis? Share with them my Diverticulosis & Nuts video.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sean T Evans / Flickr. This image has been modified.

Original Link

The 3 Vitamins that Prevent Brain Loss

The 3 Vitamins that Prevent Brain Loss.jpeg

By our seventies, one in five of us will suffer from cognitive impairment. Within five years, half of those cognitively impaired will progress to dementia and death. The earlier we can slow or stop this process, the better.

Although an effective treatment for Alzheimer's disease is unavailable, interventions just to control risk factors could prevent millions of cases. An immense effort has been spent on identifying such risk factors for Alzheimer's and developing treatments to reduce them.

In 1990, a small study of 22 Alzheimer's patients reported high concentrations of homocysteine in their blood. The homocysteine story goes back to 1969 when a Harvard pathologist reported two cases of children, one dating back to 1933, whose brains had turned to mush. They both suffered from extremely rare genetic mutations that led to abnormally high levels of homocysteine in their bodies. Is it possible, he asked, that homocysteine could cause brain damage even in people without genetic defects?

Here we are in the 21st century, and homocysteine is considered "a strong, independent risk factor for the development of dementia and Alzheimer's disease." Having a blood level over 14 (µmol/L) may double our risk. In the Framingham Study, researchers estimate that as many as one in six Alzheimer's cases may be attributable to elevated homocysteine in the blood, which is now thought to play a role in brain damage and cognitive and memory decline. Our body can detoxify homocysteine, though, using three vitamins: folate, vitamin B12, and vitamin B6. So why don't we put them to the test? No matter how many studies find an association between high homocysteinea and cognitive decline, dementia, or Alzheimer's disease, a cause-and-effect role can only be confirmed by interventional studies.

Initially, the results were disappointing. Vitamin supplementation did not seem to work, but the studies were tracking neuropsychological assessments, which are more subjective compared to structural neuroimaging--that is, actually seeing what's happening to the brain. A double-blind randomized controlled trial found that homocysteine-lowering by B vitamins can slow the rate of accelerated brain atrophy in people with mild cognitive impairment. As we age, our brains slowly atrophy, but the shrinking is much accelerated in patients suffering from Alzheimer's disease. An intermediate rate of shrinkage is found in people with mild cognitive impairment. The thinking is if we could slow the rate of brain loss, we may be able to slow the conversion to Alzheimer's disease. Researchers tried giving people B vitamins for two years and found it markedly slowed the rate of brain shrinkage. The rate of atrophy in those with high homocysteine levels was cut in half. A simple, safe treatment can slow the accelerated rate of brain loss.

A follow-up study went further by demonstrating that B-vitamin treatment reduces, by as much as seven-fold, the brain atrophy in the regions specifically vulnerable to the Alzheimer's disease process. You can see the amount of brain atrophy over a two-year period in the placebo group versus the B-vitamin group in my Preventing Brain Loss with B Vitamins? video.

The beneficial effect of B vitamins was confined to those with high homocysteine, indicating a relative deficiency in one of those three vitamins. Wouldn't it be better to not become deficient in the first place? Most people get enough B12 and B6. The reason these folks were stuck at a homocysteine of 11 µmoles per liter is that they probably weren't getting enough folate, which is found concentrated in beans and greens. Ninety-six percent of Americans don't even make the minimum recommended amount of dark green leafy vegetables, which is the same pitiful number who don't eat the minimum recommendation for beans.

If we put people on a healthy diet--a plant-based diet--we can drop their homocysteine levels by 20% in just one week, from around 11 mmoles per liter down to 9 mmoles per liter. The fact that they showed rapid and significant homocysteine lowering without any pills or supplements implies that multiple mechanisms may have been at work. The researchers suggest it may be because of the fiber. Every gram of daily fiber consumption may increase folate levels in the blood nearly 2%, perhaps by boosting vitamin production in the colon by all our friendly gut bacteria. It also could be from the decreased methionine intake.

Methionine is where homocysteine comes from. Homocysteine is a breakdown product of methionine, which comes mostly from animal protein. If we give someone bacon and eggs for breakfast and a steak for dinner, we can get spikes of homocysteine levels in the blood. Thus, decreased methionine intake on a plant-based diet may be another factor contributing to lower, safer homocysteine levels.

The irony is that those who eat plant-based diets long-term, not just at a health spa for a week, have terrible homocysteine levels. Meat-eaters are up at 11 µmoles per liter, but vegetarians at nearly 14 µmoles per liter and vegans at 16 µmoles per liter. Why? The vegetarians and vegans were getting more fiber and folate, but not enough vitamin B12. Most vegans were at risk for suffering from hyperhomocysteinaemia (too much homocysteine in the blood) because most vegans in the study were not supplementing with vitamin B12 or eating vitamin B12-fortified foods, which is critical for anyone eating a plant-based diet. If you take vegans and give them B12, their homocysteine levels can drop down below 5. Why not down to just 11? The reason meat-eaters were stuck up at 11 is presumably because they weren't getting enough folate. Once vegans got enough B12, they could finally fully exploit the benefits of their plant-based diets and come out with the lowest levels of all.

This is very similar to the findings in my video Vitamin B12 Necessary for Arterial Health.

For more details on ensuring a regular reliable source of vitamin B12:

There are more benefits to lowering your methionine intake. Check out Methionine Restriction as a Life Extension Strategy and Starving Cancer with Methionine Restriction.

For more on brain health in general, see these videos:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Thomas Hawk / Flickr. This image has been modified.

Original Link

The 3 Vitamins that Prevent Brain Loss

The 3 Vitamins that Prevent Brain Loss.jpeg

By our seventies, one in five of us will suffer from cognitive impairment. Within five years, half of those cognitively impaired will progress to dementia and death. The earlier we can slow or stop this process, the better.

Although an effective treatment for Alzheimer's disease is unavailable, interventions just to control risk factors could prevent millions of cases. An immense effort has been spent on identifying such risk factors for Alzheimer's and developing treatments to reduce them.

In 1990, a small study of 22 Alzheimer's patients reported high concentrations of homocysteine in their blood. The homocysteine story goes back to 1969 when a Harvard pathologist reported two cases of children, one dating back to 1933, whose brains had turned to mush. They both suffered from extremely rare genetic mutations that led to abnormally high levels of homocysteine in their bodies. Is it possible, he asked, that homocysteine could cause brain damage even in people without genetic defects?

Here we are in the 21st century, and homocysteine is considered "a strong, independent risk factor for the development of dementia and Alzheimer's disease." Having a blood level over 14 (µmol/L) may double our risk. In the Framingham Study, researchers estimate that as many as one in six Alzheimer's cases may be attributable to elevated homocysteine in the blood, which is now thought to play a role in brain damage and cognitive and memory decline. Our body can detoxify homocysteine, though, using three vitamins: folate, vitamin B12, and vitamin B6. So why don't we put them to the test? No matter how many studies find an association between high homocysteinea and cognitive decline, dementia, or Alzheimer's disease, a cause-and-effect role can only be confirmed by interventional studies.

Initially, the results were disappointing. Vitamin supplementation did not seem to work, but the studies were tracking neuropsychological assessments, which are more subjective compared to structural neuroimaging--that is, actually seeing what's happening to the brain. A double-blind randomized controlled trial found that homocysteine-lowering by B vitamins can slow the rate of accelerated brain atrophy in people with mild cognitive impairment. As we age, our brains slowly atrophy, but the shrinking is much accelerated in patients suffering from Alzheimer's disease. An intermediate rate of shrinkage is found in people with mild cognitive impairment. The thinking is if we could slow the rate of brain loss, we may be able to slow the conversion to Alzheimer's disease. Researchers tried giving people B vitamins for two years and found it markedly slowed the rate of brain shrinkage. The rate of atrophy in those with high homocysteine levels was cut in half. A simple, safe treatment can slow the accelerated rate of brain loss.

A follow-up study went further by demonstrating that B-vitamin treatment reduces, by as much as seven-fold, the brain atrophy in the regions specifically vulnerable to the Alzheimer's disease process. You can see the amount of brain atrophy over a two-year period in the placebo group versus the B-vitamin group in my Preventing Brain Loss with B Vitamins? video.

The beneficial effect of B vitamins was confined to those with high homocysteine, indicating a relative deficiency in one of those three vitamins. Wouldn't it be better to not become deficient in the first place? Most people get enough B12 and B6. The reason these folks were stuck at a homocysteine of 11 µmoles per liter is that they probably weren't getting enough folate, which is found concentrated in beans and greens. Ninety-six percent of Americans don't even make the minimum recommended amount of dark green leafy vegetables, which is the same pitiful number who don't eat the minimum recommendation for beans.

If we put people on a healthy diet--a plant-based diet--we can drop their homocysteine levels by 20% in just one week, from around 11 mmoles per liter down to 9 mmoles per liter. The fact that they showed rapid and significant homocysteine lowering without any pills or supplements implies that multiple mechanisms may have been at work. The researchers suggest it may be because of the fiber. Every gram of daily fiber consumption may increase folate levels in the blood nearly 2%, perhaps by boosting vitamin production in the colon by all our friendly gut bacteria. It also could be from the decreased methionine intake.

Methionine is where homocysteine comes from. Homocysteine is a breakdown product of methionine, which comes mostly from animal protein. If we give someone bacon and eggs for breakfast and a steak for dinner, we can get spikes of homocysteine levels in the blood. Thus, decreased methionine intake on a plant-based diet may be another factor contributing to lower, safer homocysteine levels.

The irony is that those who eat plant-based diets long-term, not just at a health spa for a week, have terrible homocysteine levels. Meat-eaters are up at 11 µmoles per liter, but vegetarians at nearly 14 µmoles per liter and vegans at 16 µmoles per liter. Why? The vegetarians and vegans were getting more fiber and folate, but not enough vitamin B12. Most vegans were at risk for suffering from hyperhomocysteinaemia (too much homocysteine in the blood) because most vegans in the study were not supplementing with vitamin B12 or eating vitamin B12-fortified foods, which is critical for anyone eating a plant-based diet. If you take vegans and give them B12, their homocysteine levels can drop down below 5. Why not down to just 11? The reason meat-eaters were stuck up at 11 is presumably because they weren't getting enough folate. Once vegans got enough B12, they could finally fully exploit the benefits of their plant-based diets and come out with the lowest levels of all.

This is very similar to the findings in my video Vitamin B12 Necessary for Arterial Health.

For more details on ensuring a regular reliable source of vitamin B12:

There are more benefits to lowering your methionine intake. Check out Methionine Restriction as a Life Extension Strategy and Starving Cancer with Methionine Restriction.

For more on brain health in general, see these videos:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Thomas Hawk / Flickr. This image has been modified.

Original Link

Optimal Bowel Movement Position

Optimal Bowel Movement Position.jpeg

Compared to rural African populations eating traditional plant-based diets, white South Africans and black and white Americans have more than 50 times more heart disease, 10 times more colon cancer, more than 50 times more gallstones and appendicitis, and more than 25 times the rates of "pressure diseases"--diverticulitis, hemorrhoids, varicose veins, and hiatal hernia.

As I discussed in my Should You Sit, Squat, or Lean During a Bowel Movement?, bowel movements should be effortless. When we have to strain at stool, the pressure may balloon out-pouchings from our colon, causing diverticulosis; inflate hemorrhoids around the anus; cause the valves in the veins of our legs to fail, causing varicose veins; and even force part of the stomach up through the diaphragm into our chest cavity, causing a hiatal hernia (as I covered previously). When this was first proposed by Dr. Denis Burkitt, he blamed these conditions on the straining caused by a lack of fiber in the diet. He did, however, acknowledge there were alternative explanations. For example, in rural Africa, they used a traditional squatting position when they defecated, which may have taken off some of the pressure.

For hundreds of thousands of years, everyone used the squatting position, which may help by straightening the "anorectal angle." There's actually a kink at almost a 90-degree angle right at the end of the rectum that helps keep us from pooping our pants when we're just out walking around. That angle only slightly straightens out in a common sitting posture on the toilet. Maximal straightening out of this angle occurs in a squatting posture, potentially permitting smoother defecation. (I remember sitting in geometry class wondering when I'd ever use the stuff I was learning. Little did I know I would one day be calculating anorectal angles with it! Stay in school, kids :)

How did they figure this out? Researchers filled latex tubes with a radiopaque fluid, stuck them up some volunteers, and took X-rays with the hips flexed at various angles. They concluded that flexing the knees towards the chest like one does when squatting may straighten that angle and reduce the amount of pressure needed to empty the rectum. This idea wasn't directly put to the test until 2002, when researchers used defecography (which are X-rays taken while the person is defecating) on subjects in sitting and squatting positions. Indeed, squatting increased the anorectal angle from around 90 degrees all the way up to about 140.

So should we all get one of those little stools for our stools, like the Squatty Potty that you put in front of your toilet to step on? No, they don't seem to work. Researchers tried adding a footstool to decrease sitting height, but it didn't seem to significantly affect the time it took to empty one's bowels or decrease the difficulty of defecating. They tried even higher footstools, but people complained of extreme discomfort using them. Nothing seemed to compare with actual squatting, which may give the maximum advantage. However, in developed nations, it may not be convenient. But, we can achieve a similar effect by leaning forward as we sit, with our hands on or near the floor. The researchers advise all sufferers from constipation to adopt this forward-leaning position when defecating, as the weight of our torso pressing against the thighs may put an extra squeeze on our colons.

Instead of finding ways to add more pressure, why not get to the root of the problem? "The fundamental cause of straining is the effort required to pass unnaturally firm stools." By manipulating the anorectal angle through squatting or leaning, we can more easily pass unnaturally firm stools. But why not just treat the cause and eat enough fiber-containing whole plant foods to create stools so large and soft that you could pass them effortlessly at any angle?

Famed cardiologist Dr. Joel Kahn once said that you know you know you're eating a plant-based diet when "you take longer to pee than to poop."

In all seriousness, even squatting does not significantly decrease the pressure gradient that may cause a hiatal hernia. It does not prevent the pressure transmission down into the legs that may cause varicose veins. And this is not just a cosmetic issue. Protracted straining can cause heart rhythm disturbances and reduction in blood flow to the heart and brain, resulting in defecation-related fainting and death. Just 15 seconds of straining can temporarily cut blood flow to the brain by 21% and blood flow to the heart by nearly one-half, thereby providing a mechanism for the well-known "bed pan death" syndrome. If you think you have to strain a lot while sitting, try having a bowel movement on your back. Bearing down for just a few seconds can send our blood pressure up to nearly 170 over 110, which may help account for the notorious frequency of sudden and unexpected deaths of patients while using bed pans in hospitals. Hopefully, if we eat healthy enough, we won't end up in the hospital to begin with.

Wondering How Many Bowel Movements Should You Have Every Day? Watch the video to find out!

The "forcing part of your stomach up through the diaphragm into our chest cavity" phenomenon is covered in my video Diet and Hiatal Hernia. The "ballooning of out-pouchings from our colon" is called diverticulosis. There's a video I did about 6 years ago (Diverticulosis & Nuts), but I have some new and improved ones available: Diverticulosis: When Our Most Common Gut Disorder Hardly Existed and Does Fiber Really Prevent Diverticulosis?

More on that extraordinary African data here:

So excited to be able to slip in a plug for Dr. Kahn's work. His brand of "interpreventional cardiology" can be found at www.drjoelkahn.com.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank. This image has been modified.

Original Link

Optimal Bowel Movement Position

Optimal Bowel Movement Position.jpeg

Compared to rural African populations eating traditional plant-based diets, white South Africans and black and white Americans have more than 50 times more heart disease, 10 times more colon cancer, more than 50 times more gallstones and appendicitis, and more than 25 times the rates of "pressure diseases"--diverticulitis, hemorrhoids, varicose veins, and hiatal hernia.

As I discussed in my Should You Sit, Squat, or Lean During a Bowel Movement?, bowel movements should be effortless. When we have to strain at stool, the pressure may balloon out-pouchings from our colon, causing diverticulosis; inflate hemorrhoids around the anus; cause the valves in the veins of our legs to fail, causing varicose veins; and even force part of the stomach up through the diaphragm into our chest cavity, causing a hiatal hernia (as I covered previously). When this was first proposed by Dr. Denis Burkitt, he blamed these conditions on the straining caused by a lack of fiber in the diet. He did, however, acknowledge there were alternative explanations. For example, in rural Africa, they used a traditional squatting position when they defecated, which may have taken off some of the pressure.

For hundreds of thousands of years, everyone used the squatting position, which may help by straightening the "anorectal angle." There's actually a kink at almost a 90-degree angle right at the end of the rectum that helps keep us from pooping our pants when we're just out walking around. That angle only slightly straightens out in a common sitting posture on the toilet. Maximal straightening out of this angle occurs in a squatting posture, potentially permitting smoother defecation. (I remember sitting in geometry class wondering when I'd ever use the stuff I was learning. Little did I know I would one day be calculating anorectal angles with it! Stay in school, kids :)

How did they figure this out? Researchers filled latex tubes with a radiopaque fluid, stuck them up some volunteers, and took X-rays with the hips flexed at various angles. They concluded that flexing the knees towards the chest like one does when squatting may straighten that angle and reduce the amount of pressure needed to empty the rectum. This idea wasn't directly put to the test until 2002, when researchers used defecography (which are X-rays taken while the person is defecating) on subjects in sitting and squatting positions. Indeed, squatting increased the anorectal angle from around 90 degrees all the way up to about 140.

So should we all get one of those little stools for our stools, like the Squatty Potty that you put in front of your toilet to step on? No, they don't seem to work. Researchers tried adding a footstool to decrease sitting height, but it didn't seem to significantly affect the time it took to empty one's bowels or decrease the difficulty of defecating. They tried even higher footstools, but people complained of extreme discomfort using them. Nothing seemed to compare with actual squatting, which may give the maximum advantage. However, in developed nations, it may not be convenient. But, we can achieve a similar effect by leaning forward as we sit, with our hands on or near the floor. The researchers advise all sufferers from constipation to adopt this forward-leaning position when defecating, as the weight of our torso pressing against the thighs may put an extra squeeze on our colons.

Instead of finding ways to add more pressure, why not get to the root of the problem? "The fundamental cause of straining is the effort required to pass unnaturally firm stools." By manipulating the anorectal angle through squatting or leaning, we can more easily pass unnaturally firm stools. But why not just treat the cause and eat enough fiber-containing whole plant foods to create stools so large and soft that you could pass them effortlessly at any angle?

Famed cardiologist Dr. Joel Kahn once said that you know you know you're eating a plant-based diet when "you take longer to pee than to poop."

In all seriousness, even squatting does not significantly decrease the pressure gradient that may cause a hiatal hernia. It does not prevent the pressure transmission down into the legs that may cause varicose veins. And this is not just a cosmetic issue. Protracted straining can cause heart rhythm disturbances and reduction in blood flow to the heart and brain, resulting in defecation-related fainting and death. Just 15 seconds of straining can temporarily cut blood flow to the brain by 21% and blood flow to the heart by nearly one-half, thereby providing a mechanism for the well-known "bed pan death" syndrome. If you think you have to strain a lot while sitting, try having a bowel movement on your back. Bearing down for just a few seconds can send our blood pressure up to nearly 170 over 110, which may help account for the notorious frequency of sudden and unexpected deaths of patients while using bed pans in hospitals. Hopefully, if we eat healthy enough, we won't end up in the hospital to begin with.

Wondering How Many Bowel Movements Should You Have Every Day? Watch the video to find out!

The "forcing part of your stomach up through the diaphragm into our chest cavity" phenomenon is covered in my video Diet and Hiatal Hernia. The "ballooning of out-pouchings from our colon" is called diverticulosis. There's a video I did about 6 years ago (Diverticulosis & Nuts), but I have some new and improved ones available: Diverticulosis: When Our Most Common Gut Disorder Hardly Existed and Does Fiber Really Prevent Diverticulosis?

More on that extraordinary African data here:

So excited to be able to slip in a plug for Dr. Kahn's work. His brand of "interpreventional cardiology" can be found at www.drjoelkahn.com.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank. This image has been modified.

Original Link

Plant-Based Diets as the Nutritional Equivalent of Quitting Smoking

The Best Kept Secret in Medicine.jpeg

Despite the most widely accepted and well-established chronic disease practice guidelines uniformly calling for lifestyle change as the first line of therapy, doctors often don't follow these recommendations. As seen in my video, The Best Kept Secret in Medicine, lifestyle interventions are not only safer and cheaper but often more effective in reducing heart disease and failure, hypertension, stroke, cancer, diabetes, and deaths from all causes than nearly any other medical intervention.

"Some useful lessons may come from the war on tobacco," Dr. Neal Barnard wrote in the American Medical Association's ethics journal. When he stopped smoking himself in the 1980s, the lung cancer death rate was peaking in the United States. As the prevalence of smoking dropped, so have lung cancer rates. No longer were doctors telling patients to "[g]ive your throat a vacation" by smoking a fresh cigarette. Doctors realized they were "more effective at counseling patients to quit smoking if they no longer had tobacco stains on their own fingers." "In other words, doctors went from being bystanders--or even enablers--to leading the fight against smoking." And today, says Dr. Barnard, "Plant-based diets are the nutritional equivalent of quitting smoking."

From an editorial in the journal Alternative Therapies in Health and Medicine: "If we were to gather the world's top nutrition scientists and experts (free from food industry influence), there would be very little debate about the essential properties of good nutrition. Unfortunately, most doctors are nutritionally illiterate. And worse, they don't know how to use the most powerful medicine available to them: food."

Physician advice matters. When doctors told patients to improve their diets by cutting down on meat, dairy, and fried foods, patients were more likely to make dietary changes. It may work even better if doctors practice what they preach. Researchers at Emory University randomized patients to watch one of two videos. In one video, a physician briefly mentioned her personal dietary and exercise practices and visible on her desk were both a bike helmet and an apple. In the other video, she did not discuss her personal healthy practices, and the helmet and apple were missing. In both videos, the doctor advised the patients to cut down on meat, not usually have meat for breakfast, and have no meats for lunch or dinner at least half the time. In the disclosure video, the physician related that she herself had successfully cut down on meat. Perhaps not surprisingly, patients rated that physician to be more believable and motivating. Physicians who walk the walk--literally--and have healthier eating habits not only tend to counsel more about exercise and diet, but have been found to seem more credible or motivating when they do so.

It may also make them better doctors. A randomized controlled intervention to clean up doctors' diets, called the Promoting Health by Self Experience (PHASE) trial, found that healthcare providers' personal lifestyles were correlated directly with their clinical performance. Healthcare providers' improved wellbeing and lifestyle cascaded to the patients and clinics, suggesting an additional strategy to achieve successful health promotion.

Are you ready for the best kept secret in medicine? Given the right conditions, the body can heal itself. For example, treating cardiovascular disease with appropriate dietary changes is good medicine, reducing mortality without any adverse effects. We should keep doing research, certainly, but educating physicians and patients alike about the existing knowledge regarding the power of nutrition as medicine may be the best investment we can make.

Of course, to advise patients about nutrition, physicians first have to educate themselves, as it is unlikely they received formal nutrition education during their medical training:

For more on the power of healthy living, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank. This image has been modified.

Original Link

Plant-Based Diets as the Nutritional Equivalent of Quitting Smoking

The Best Kept Secret in Medicine.jpeg

Despite the most widely accepted and well-established chronic disease practice guidelines uniformly calling for lifestyle change as the first line of therapy, doctors often don't follow these recommendations. As seen in my video, The Best Kept Secret in Medicine, lifestyle interventions are not only safer and cheaper but often more effective in reducing heart disease and failure, hypertension, stroke, cancer, diabetes, and deaths from all causes than nearly any other medical intervention.

"Some useful lessons may come from the war on tobacco," Dr. Neal Barnard wrote in the American Medical Association's ethics journal. When he stopped smoking himself in the 1980s, the lung cancer death rate was peaking in the United States. As the prevalence of smoking dropped, so have lung cancer rates. No longer were doctors telling patients to "[g]ive your throat a vacation" by smoking a fresh cigarette. Doctors realized they were "more effective at counseling patients to quit smoking if they no longer had tobacco stains on their own fingers." "In other words, doctors went from being bystanders--or even enablers--to leading the fight against smoking." And today, says Dr. Barnard, "Plant-based diets are the nutritional equivalent of quitting smoking."

From an editorial in the journal Alternative Therapies in Health and Medicine: "If we were to gather the world's top nutrition scientists and experts (free from food industry influence), there would be very little debate about the essential properties of good nutrition. Unfortunately, most doctors are nutritionally illiterate. And worse, they don't know how to use the most powerful medicine available to them: food."

Physician advice matters. When doctors told patients to improve their diets by cutting down on meat, dairy, and fried foods, patients were more likely to make dietary changes. It may work even better if doctors practice what they preach. Researchers at Emory University randomized patients to watch one of two videos. In one video, a physician briefly mentioned her personal dietary and exercise practices and visible on her desk were both a bike helmet and an apple. In the other video, she did not discuss her personal healthy practices, and the helmet and apple were missing. In both videos, the doctor advised the patients to cut down on meat, not usually have meat for breakfast, and have no meats for lunch or dinner at least half the time. In the disclosure video, the physician related that she herself had successfully cut down on meat. Perhaps not surprisingly, patients rated that physician to be more believable and motivating. Physicians who walk the walk--literally--and have healthier eating habits not only tend to counsel more about exercise and diet, but have been found to seem more credible or motivating when they do so.

It may also make them better doctors. A randomized controlled intervention to clean up doctors' diets, called the Promoting Health by Self Experience (PHASE) trial, found that healthcare providers' personal lifestyles were correlated directly with their clinical performance. Healthcare providers' improved wellbeing and lifestyle cascaded to the patients and clinics, suggesting an additional strategy to achieve successful health promotion.

Are you ready for the best kept secret in medicine? Given the right conditions, the body can heal itself. For example, treating cardiovascular disease with appropriate dietary changes is good medicine, reducing mortality without any adverse effects. We should keep doing research, certainly, but educating physicians and patients alike about the existing knowledge regarding the power of nutrition as medicine may be the best investment we can make.

Of course, to advise patients about nutrition, physicians first have to educate themselves, as it is unlikely they received formal nutrition education during their medical training:

For more on the power of healthy living, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank. This image has been modified.

Original Link

Stomach Stapling Kids

Stomach Stapling Kids.jpeg

Weight loss surgery for children and adolescents is becoming widespread and is being performed in children as young as five years old. Roux-en-Y gastric bypass is the most common type of procedure, in which surgeons cut out nearly the entire stomach, as you can see in my video, Stomach Stapling Kids. Bariatric surgery in pediatric patients does result in weight loss, but also has the potential for serious complications. These include pulmonary embolism, shock, intestinal obstruction, postoperative bleeding, leaking along the staple line, severe malnutrition, and even death at a rate of 0.5%. This means that 1 in 200 kids who go under the knife may die. Infection is identified as the leading cause of death and is most often associated with leaking of intestinal contents into the abdominal cavity.

Sometimes the surgery doesn't work, and you have to go in and do another procedure. If that doesn't work either, you can always try implanting electrodes into patients' brains, a "novel antiobesity strategy" reported in the Journal of Neurosurgery. The concept of deep brain stimulation "since its inception has been that placing an electrode somewhere in the brain could make people eat less." You drill two little holes in the patient's skull, snake in some electrodes a few inches, and then tunnel the wires under the scalp into a pulse generator implanted under the skin on the chest. You evidently can't crank it up past 5 volts because it induces anxiety and nausea. But even without the nausea, people with electrodes stuck in their brains lost an average of about 10 pounds a year.

The childhood obesity epidemic is so tragic. It pains me to see insult piled on injury. Too often, medical treatments can be worse than the disease. See my video, Why Prevention Is Worth a Ton of Cure.

Speaking of prevention, what might be the best diet for our young ones? See:

There are complications associated with gastric bypass in adults, too. See my video The Dangers of Broccoli?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: ReSurge International / Flickr. This image has been modified.

Original Link

Stomach Stapling Kids

Stomach Stapling Kids.jpeg

Weight loss surgery for children and adolescents is becoming widespread and is being performed in children as young as five years old. Roux-en-Y gastric bypass is the most common type of procedure, in which surgeons cut out nearly the entire stomach, as you can see in my video, Stomach Stapling Kids. Bariatric surgery in pediatric patients does result in weight loss, but also has the potential for serious complications. These include pulmonary embolism, shock, intestinal obstruction, postoperative bleeding, leaking along the staple line, severe malnutrition, and even death at a rate of 0.5%. This means that 1 in 200 kids who go under the knife may die. Infection is identified as the leading cause of death and is most often associated with leaking of intestinal contents into the abdominal cavity.

Sometimes the surgery doesn't work, and you have to go in and do another procedure. If that doesn't work either, you can always try implanting electrodes into patients' brains, a "novel antiobesity strategy" reported in the Journal of Neurosurgery. The concept of deep brain stimulation "since its inception has been that placing an electrode somewhere in the brain could make people eat less." You drill two little holes in the patient's skull, snake in some electrodes a few inches, and then tunnel the wires under the scalp into a pulse generator implanted under the skin on the chest. You evidently can't crank it up past 5 volts because it induces anxiety and nausea. But even without the nausea, people with electrodes stuck in their brains lost an average of about 10 pounds a year.

The childhood obesity epidemic is so tragic. It pains me to see insult piled on injury. Too often, medical treatments can be worse than the disease. See my video, Why Prevention Is Worth a Ton of Cure.

Speaking of prevention, what might be the best diet for our young ones? See:

There are complications associated with gastric bypass in adults, too. See my video The Dangers of Broccoli?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: ReSurge International / Flickr. This image has been modified.

Original Link

Stomach Stapling Kids

Stomach Stapling Kids.jpeg

Weight loss surgery for children and adolescents is becoming widespread and is being performed in children as young as five years old. Roux-en-Y gastric bypass is the most common type of procedure, in which surgeons cut out nearly the entire stomach, as you can see in my video, Stomach Stapling Kids. Bariatric surgery in pediatric patients does result in weight loss, but also has the potential for serious complications. These include pulmonary embolism, shock, intestinal obstruction, postoperative bleeding, leaking along the staple line, severe malnutrition, and even death at a rate of 0.5%. This means that 1 in 200 kids who go under the knife may die. Infection is identified as the leading cause of death and is most often associated with leaking of intestinal contents into the abdominal cavity.

Sometimes the surgery doesn't work, and you have to go in and do another procedure. If that doesn't work either, you can always try implanting electrodes into patients' brains, a "novel antiobesity strategy" reported in the Journal of Neurosurgery. The concept of deep brain stimulation "since its inception has been that placing an electrode somewhere in the brain could make people eat less." You drill two little holes in the patient's skull, snake in some electrodes a few inches, and then tunnel the wires under the scalp into a pulse generator implanted under the skin on the chest. You evidently can't crank it up past 5 volts because it induces anxiety and nausea. But even without the nausea, people with electrodes stuck in their brains lost an average of about 10 pounds a year.

The childhood obesity epidemic is so tragic. It pains me to see insult piled on injury. Too often, medical treatments can be worse than the disease. See my video, Why Prevention Is Worth a Ton of Cure.

Speaking of prevention, what might be the best diet for our young ones? See:

There are complications associated with gastric bypass in adults, too. See my video The Dangers of Broccoli?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: ReSurge International / Flickr. This image has been modified.

Original Link