Why Is Milk Consumption Associated with More Bone Fractures?

Why Is Milk Consumption Associated with More Bone Fractures?.jpg

Milk is touted to build strong bones, but a compilation of all the best studies found no association between milk consumption and hip fracture risk, so drinking milk as an adult might not help bones, but what about in adolescence? Harvard researchers decided to put it to the test.

Studies have shown that greater milk consumption during childhood and adolescence contributes to peak bone mass, and is therefore expected to help avoid osteoporosis and bone fractures in later life. But that's not what researchers have found (as you can see in my video Is Milk Good for Our Bones?). Milk consumption during teenage years was not associated with a lower risk of hip fracture, and if anything, milk consumption was associated with a borderline increase in fracture risk in men.

It appears that the extra boost in total body bone mineral density from getting extra calcium is lost within a few years; even if you keep the calcium supplementation up. This suggests a partial explanation for the long-standing enigma that hip fracture rates are highest in populations with the greatest milk consumption. This may be an explanation for why they're not lower, but why would they be higher?

This enigma irked a Swedish research team, puzzled because studies again and again had shown a tendency of a higher risk of fracture with a higher intake of milk. Well, there is a rare birth defect called galactosemia, where babies are born without the enzymes needed to detoxify the galactose found in milk, so they end up with elevated levels of galactose in their blood, which can causes bone loss even as kids. So maybe, the Swedish researchers figured, even in normal people that can detoxify the stuff, it might not be good for the bones to be drinking it every day.

And galactose doesn't just hurt the bones. Galactose is what scientists use to cause premature aging in lab animals--it can shorten their lifespan, cause oxidative stress, inflammation, and brain degeneration--just with the equivalent of like one to two glasses of milk's worth of galactose a day. We're not rats, though. But given the high amount of galactose in milk, recommendations to increase milk intake for prevention of fractures could be a conceivable contradiction. So, the researchers decided to put it to the test, looking at milk intake and mortality as well as fracture risk to test their theory.

A hundred thousand men and women were followed for up to 20 years. Researchers found that milk-drinking women had higher rates of death, more heart disease, and significantly more cancer for each glass of milk. Three glasses a day was associated with nearly twice the risk of premature death, and they had significantly more bone and hip fractures. More milk, more fractures.

Men in a separate study also had a higher rate of death with higher milk consumption, but at least they didn't have higher fracture rates. So, the researchers found a dose dependent higher rate of both mortality and fracture in women, and a higher rate of mortality in men with milk intake, but the opposite for other dairy products like soured milk and yogurt, which would go along with the galactose theory, since bacteria can ferment away some of the lactose. To prove it though, we need a randomized controlled trial to examine the effect of milk intake on mortality and fractures. As the accompanying editorial pointed out, we better find this out soon since milk consumption is on the rise around the world.

What can we do for our bones, then? Weight-bearing exercise such as jumping, weight-lifting, and walking with a weighted vest or backpack may help, along with getting enough calcium (Alkaline Diets, Animal Protein, & Calcium Loss) and vitamin D (Resolving the Vitamin D-Bate). Eating beans (Phytates for the Prevention of Osteoporosis) and avoiding phosphate additives (Phosphate Additives in Meat Purge and Cola) may also help.

Maybe the galactose angle can help explain the findings on prostate cancer (Prostate Cancer and Organic Milk vs. Almond Milk) and Parkinson's disease (Preventing Parkinson's Disease With Diet).

Galactose is a milk sugar. There's also concern about milk proteins (see my casomorphin series) and fats (The Saturated Fat Studies: Buttering Up the Public and Trans Fat in Meat and Dairy) as well as the hormones (Dairy Estrogen and Male Fertility, Estrogen in Meat, Dairy, and Eggs and Why Do Vegan Women Have 5x Fewer Twins?).

Milk might also play a role in diabetes (Does Casein in Milk Trigger Type 1 Diabetes, Does Bovine Insulin in Milk Trigger Type 1 Diabetes?) and breast cancer (Is Bovine Leukemia in Milk Infectious?, The Role of Bovine Leukemia Virus in Breast Cancer, and Industry Response to Bovine Leukemia Virus in Breast Cancer).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Why Is Milk Consumption Associated with More Bone Fractures?

Why Is Milk Consumption Associated with More Bone Fractures?.jpg

Milk is touted to build strong bones, but a compilation of all the best studies found no association between milk consumption and hip fracture risk, so drinking milk as an adult might not help bones, but what about in adolescence? Harvard researchers decided to put it to the test.

Studies have shown that greater milk consumption during childhood and adolescence contributes to peak bone mass, and is therefore expected to help avoid osteoporosis and bone fractures in later life. But that's not what researchers have found (as you can see in my video Is Milk Good for Our Bones?). Milk consumption during teenage years was not associated with a lower risk of hip fracture, and if anything, milk consumption was associated with a borderline increase in fracture risk in men.

It appears that the extra boost in total body bone mineral density from getting extra calcium is lost within a few years; even if you keep the calcium supplementation up. This suggests a partial explanation for the long-standing enigma that hip fracture rates are highest in populations with the greatest milk consumption. This may be an explanation for why they're not lower, but why would they be higher?

This enigma irked a Swedish research team, puzzled because studies again and again had shown a tendency of a higher risk of fracture with a higher intake of milk. Well, there is a rare birth defect called galactosemia, where babies are born without the enzymes needed to detoxify the galactose found in milk, so they end up with elevated levels of galactose in their blood, which can causes bone loss even as kids. So maybe, the Swedish researchers figured, even in normal people that can detoxify the stuff, it might not be good for the bones to be drinking it every day.

And galactose doesn't just hurt the bones. Galactose is what scientists use to cause premature aging in lab animals--it can shorten their lifespan, cause oxidative stress, inflammation, and brain degeneration--just with the equivalent of like one to two glasses of milk's worth of galactose a day. We're not rats, though. But given the high amount of galactose in milk, recommendations to increase milk intake for prevention of fractures could be a conceivable contradiction. So, the researchers decided to put it to the test, looking at milk intake and mortality as well as fracture risk to test their theory.

A hundred thousand men and women were followed for up to 20 years. Researchers found that milk-drinking women had higher rates of death, more heart disease, and significantly more cancer for each glass of milk. Three glasses a day was associated with nearly twice the risk of premature death, and they had significantly more bone and hip fractures. More milk, more fractures.

Men in a separate study also had a higher rate of death with higher milk consumption, but at least they didn't have higher fracture rates. So, the researchers found a dose dependent higher rate of both mortality and fracture in women, and a higher rate of mortality in men with milk intake, but the opposite for other dairy products like soured milk and yogurt, which would go along with the galactose theory, since bacteria can ferment away some of the lactose. To prove it though, we need a randomized controlled trial to examine the effect of milk intake on mortality and fractures. As the accompanying editorial pointed out, we better find this out soon since milk consumption is on the rise around the world.

What can we do for our bones, then? Weight-bearing exercise such as jumping, weight-lifting, and walking with a weighted vest or backpack may help, along with getting enough calcium (Alkaline Diets, Animal Protein, & Calcium Loss) and vitamin D (Resolving the Vitamin D-Bate). Eating beans (Phytates for the Prevention of Osteoporosis) and avoiding phosphate additives (Phosphate Additives in Meat Purge and Cola) may also help.

Maybe the galactose angle can help explain the findings on prostate cancer (Prostate Cancer and Organic Milk vs. Almond Milk) and Parkinson's disease (Preventing Parkinson's Disease With Diet).

Galactose is a milk sugar. There's also concern about milk proteins (see my casomorphin series) and fats (The Saturated Fat Studies: Buttering Up the Public and Trans Fat in Meat and Dairy) as well as the hormones (Dairy Estrogen and Male Fertility, Estrogen in Meat, Dairy, and Eggs and Why Do Vegan Women Have 5x Fewer Twins?).

Milk might also play a role in diabetes (Does Casein in Milk Trigger Type 1 Diabetes, Does Bovine Insulin in Milk Trigger Type 1 Diabetes?) and breast cancer (Is Bovine Leukemia in Milk Infectious?, The Role of Bovine Leukemia Virus in Breast Cancer, and Industry Response to Bovine Leukemia Virus in Breast Cancer).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Should Pregnant Women Drink Cow’s Milk?

NF-Sept15 Why Do Vegan Women Have 5x Fewer Twins_.jpeg

Foods of animal origin in general naturally contain hormones, but cow's milk may be of particular concern. The hormones naturally found even in organic cow's milk may have played a role in studies that found a relationship between dairy products and human illnesses, such as acne, certain cancers and male reproductive disorders. Milk consumption has also been associated with an increased risk of early puberty and endometrial cancer in postmenopausal women, but "hormonal levels in food could be particularly dangerous in the case of vulnerable populations, such as young children or pregnant women. To this critical population, even a small hormonal intake could lead to major changes in the metabolism."

If you check out my video Why Do Vegan Women Have 5x Fewer Twins, you can see that children are highly sensitive to sex steroids. Because their levels of sex steroids are very low, even a small variation would account for a major change in the total activity of the involved hormone. Because no lower threshold for estrogenic action has been established, caution should be taken to avoid unnecessary exposure of fetuses and children to exogenous sex steroids, even at very low levels.

In the AMA's Pediatrics Journal, the Chair of Boston Children's Hospital's Obesity Prevention Center along with the chair of Harvard's nutrition department questioned dairy industry recommendations that children should drink three glasses of milk a day. Dairy milk evolved to promote the growth of grazing animals at high risk for predation when small, so they needed to put on a few hundred pounds quickly in the first few months of life.

The consequences of lifetime human exposure to the growth factors in milk have not been well studied. "Milk consumption increases serum concentrations of insulin-like growth factor 1, which is linked to prostate and other cancers. In addition, modern industrial methods maintain dairy cows in active milk production throughout their pregnancies, resulting in a milk supply with high levels of reproductive hormones."

Pregnant cows excrete significantly higher levels of sex steroids into their milk than non-pregnant cows. The subsequent consumption of such dairy products from pregnancy results in additional consumer exposure. And it's not just dairy. Although dairy products are an important source of hormones, other products of animal origin must be considered as well. All edible tissues of animal origin contain estrogen. This may explain why, in a study of over a thousand women eating plant-based diets, vegan women have a twinning rate that is one fifth that of vegetarians and omnivores.

Twin pregnancies are risky pregnancies, with much higher complication rates. Many parents and physicians underestimate the negative consequences of multiple pregnancy, but "women with a multiple pregnancy face greater risks for themselves and their infants." Twin babies may be ten times more likely to die at birth. To avoid these complications, the research team writes, "women attempting conception should avoid milk and dairy products."

Minimizing dairy, our nation's #1 source of saturated fat may be a good idea for dads too: Dairy Estrogen and Male Fertility.

What about the endocrine-disrupting xenoestrogens--how do they compare with the natural hormones in our food supply? That was the topic of my video Estrogen in Meat, Dairy, and Eggs.

Then once they're born, best to stick to human milk:

Then as young children, dairy can sometimes cause another problem: Childhood Constipation and Cow's Milk

Here's a selection of other pregnancy-related videos:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Image Credit: LivingLandscapeArchitecture / Flickr

Original Link

Is Monsanto’s Roundup Pesticide Glyphosate Safe?

July7.jpg

GMO soy has been found to be contaminated with pesticide residues (see Are GMOs Safe? The Case of Roundup Ready Soy), but are these levels anything to worry about? I explore this question in my video Is Monsanto's Roundup Pesticide Glyphosate Safe?.

Researchers out of Norway described the amount of pesticide residues found in GMO soy as high compared to the maximum allowable residue levels. The legal limit for glyphosate in foods had been set at 0.1-0.2 mg/kg; so these exceed the legal limits by an average of about 2000%, whereas organic and conventional non-GMO soy both had none.

So what did Monsanto do? Did the industry ditch the whole GMO thing, go back to using less pesticides so that residue levels wouldn't be so high? Or, they could just change the definition of high. What if they could get authorities to raise the maximum residue level from 0.1 or 0.2 up to 20? Then the residue levels won't look so high anymore. And this is exactly what they did. The acceptance level of glyphosate in food and animal feed has been increased by authorities in countries that use Roundup-Ready GM crops. In Brazil, they went up to ten, and the U.S. and Europe now accept up to 20. In all of these cases, the maximum residue level values appear to have been adjusted, not based on new evidence indicating glyphosate toxicity was less than previously understood, but pragmatically in response to actual observed increases in the content of residues in GMO soybeans--otherwise it wouldn't be legal to sell the stuff.

What evidence do we have, though, that these kinds of residues are harmful? For 12 years we've heard that Roundup interferes with embryonic development, but that study was about sea urchin embryos. For 14 years we heard that Roundup may disrupt hormones, but that's in mouse testicles.

Blogs will dish about concerning new studies implicating Roundup in male fertility, but if we look at the study, it's about rat testicles. Some blogs cite studies with disturbing titles like "prepubertal exposure alters testosterone levels and testicular shape," but they're talking about puberty in rats, though that doesn't make as catchy a blog title.

Why not use human tissue? Women are having babies every day--why not just experiment on human placentas, which would otherwise just get thrown away? In 2005, researchers did just that. And despite all the negative effects in rodents, glyphosate, the active ingredient in Roundup didn't seem to have much of a toxic effect on human cells even at high doses, or have much effect on a hormone regulating enzyme, leading Monsanto-funded reviewers to conclude that regardless of what hazards might be alleged based on animal studies, "glyphosate is not anticipated to produce adverse developmental and reproductive effects in humans."

But pure glyphosate isn't sprayed on crops, Roundup is, which contains a variety of adjuvants and surfactants meant to help the glyphosate penetrate into tissues. And indeed when the study was repeated with what's actually sprayed on GMO crops, there were toxic and hormonal effects even at doses smaller than the 1 or 2% concentration that's used out on the fields.

Similar results were found for other major pesticides. It took until 2014, but eight out of nine pesticide formulations tested were up to one thousand times more toxic than their so-called active ingredients, so when we just test the isolated chemicals, we may not get the whole story. Roundup was found to be 100 times more toxic than glyphosate itself. Moreover, Roundup turned out to be among the most toxic pesticides they tested. It's commonly believed that Roundup is among the safest, though, an idea spread by Monsanto, the manufacturer. However, this inconsistency between scientific fact and industrial claim may be attributed to the huge economic interests involved.

What is glyphosate? Check out: Are GMOs Safe? The Case of BT Corn.

It's the dose that makes the poison, though. Do we have evidence that the levels of Roundup chemicals not only found on crops, but also in our bodies after eating those crops actually have adverse effects? That's the subject of the video: GMO Soy and Breast Cancer.

Commercial interests can have a corrupting effect on the science of nutrition and hold sway over institutions that are supposed to operate in the public interest. See for example:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine

Image Credit: Mike Mozart / Flickr

Original Link

Dietary Estrogens and Male Fertility

NF-June16.jpeg

In my video, The Role of Diet in Declining Sperm Counts, I discussed the association between high saturated fat intake and reduced semen quality. But what's the connection? One of the most recent papers on the topic found that a significant percentage of the saturated fat intake in the study was derived from dairy products. Residues of industrial chemicals may bioaccumulate up the food chain into animal fat, and some of these lipophilic (fat-loving) chemicals may have hormone-disrupting abilities.

The U.S. Environmental Protection Agency performed a national survey of persistent, bioaccumulative, and toxic pollutants in the U.S. milk supply (highlighted in my video, Dairy Estrogen and Male Fertility). The EPA team noted that since milk fat is likely to be among the highest dietary sources of exposure to these pollutants, it's important to understand the levels in the dairy supply. The team tested milk from all over the country and found a veritable witches brew of chemicals. They estimate that dairy products alone contribute about 30% to 50% of our dioxin exposure. And "like dioxin, other toxic pollutants tend to be widely dispersed in the environment, bioaccumulated through the food chain and ultimately result in low-level contamination in most animal fats."

This may explain higher pollutant concentrations in fish eaters. Xenoestrogens like polychlorinated biphenyls (PCBs) are associated with the fats of fish or animal flesh and cannot be fully removed by washing and cooking, and so can accumulate in our fat, too. Xenoestrogens are chemicals with demasculinizing or feminizing effects. But even in a non-polluted world, animal foods also have actual estrogen, which are unavoidable constituents of animal products. All foodstuff of animal origin contains estradiol, which is at least 10,000-fold more potent than most xenoestrogens. Dietary exposure--meat, dairy products and eggs--to these natural sex steroids is therefore highly relevant, as the hormones in these animals are identical to our own.

Estrogens are present in meat and eggs, but the major sources are milk and dairy products. By drinking a glass of milk, a child's intake of estradiol is 4,000 times the intake of xenoestrogens in terms of hormone activity. Modern genetically-improved dairy cows can lactate throughout their pregnancy. The problem is that during pregnancy, estrogen levels can jump as much as 30-fold.

Cheese intake has specifically been associated with lower sperm concentration, whereas dairy food intake in general has been associated with abnormal sperm shape and movement. Lower sperm concentrations by themselves may just represent a potential suppression of sperm production due to higher estrogen levels, but abnormal shape and movement suggests that dairy intake may be implicated in actual direct testicular damage.

While milk products supply most of our ingested female sex steroids, eggs are a considerable source as well, contributing about as much as meat and fish. This could be expected, as eggs are produced directly in the hens' ovaries.

Meat may also contain added hormones. In the U.S. anabolic sex steroids may be administered to animals for growth promotion, a practice banned in Europe twenty-five years ago. A study in New York found progressively lower sperm counts associated with processed meat consumption. However, similar studies in Europe after the ban found the same thing, so it may not be the implanted hormones, but rather a consequence of other meat components, such as the saturated fat raising cholesterol levels.

We've known for decades that men with high cholesterol levels show abnormalities in their "spermiograms": decreased sperm concentration, about a third of the normal sperm movement, and half the normal sperm shape. Twenty-five years later, we're finding the same thing. In the largest study to date, higher blood cholesterol levels were associated with a significantly lower percentage of normal sperm. Cholesterol was also associated with reductions in semen volume and live sperm count. These results highlight the role of fats in the blood in male fertility, and should be of concern given the rising prevalence of obesity and cholesterol problems. Although a healthier diet may be associated with healthier sperm counts, cholesterol-lowering statin drugs do not seem to help.

What about the phytoestrogens in soy? See The Effect of Soy on Precocious Puberty.

More on hormones in dairy in:

Neurotoxic chemicals in the dairy supply have been blamed for neurological conditions as well. See my video Preventing Parkinson's Disease with Diet.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Taber Andrew Bain / Flickr

Original Link

Preserving Male Reproductive Health With Diet

NF-June14.jpeg

In 1992 a controversial paper was published suggesting sperm counts have been dropping around the world over the last 50 years. However, this remains a matter of debate. It's notoriously difficult to determine sperm counts in the general population for obvious reasons. If you just go ask men for samples, less than 1 in 3 tend to agree to participate.

Finally though, a study of tens of thousands of men studied over a 17-year period was published. It indeed found a significant decline in sperm concentration, about a 30 percent drop, as well as a drop in the percentage of normal looking sperm. Most sperms looked normal in the 90's, but more recently that has dropped to less than half. This may constitute a serious public health warning.

Semen quality may actually be related to life expectancy. In a study of more than 40,000 men visiting a sperm lab during a 40-year period, they found a decrease in mortality was associated with an increase in semen quality, suggesting that semen quality may therefore be a fundamental biomarker of overall male health. Even when defective sperm are capable of fertilizing an egg, creating a child with abnormal sperm may have serious implications for that child's future health.

What role may diet play? I profiled a first-of-its-kind Harvard study suggesting that a small increase in saturated fat intake was associated with a substantially lower sperm count, but not all fat was bad. Higher intakes of omega-3's were associated with a more favorable sperm shape. This may help explain why researchers at UCLA were able to improve sperm vitality, movement, and shape by giving men about 18 walnuts a day for 12 weeks. Walnuts have more than just omega 3's, though. They also contain other important micronutrients. In a study of men aged 22 through 80, older men who ate diets containing lots of antioxidants and nutrients such as vitamin C had the genetic integrity of sperm of much younger men.

The antioxidants we eat not only end up in our semen, but are concentrated there. The amount of vitamin C ends up nearly ten times more concentrated in men's testicles than the rest of their bodies. Why? Because sperm are highly susceptible to damage induced by free radicals, and accumulating evidence suggests that this oxidative stress plays an important role in male infertility. So, more fruits and vegetables and perhaps less meat and dairy, but the Harvard data were considered preliminary. They studied fewer than 100 men, but it was the best we had... until now.

A much larger follow-up study, highlighted in my video, The Role of Diet in Declining Sperm Counts, found that the higher the saturated fat intake the lower the sperm count, up to a 65 percent reduction. These findings are of potentially great public interest because changes in diet over the past decades may be part of the explanation for the recently reported high frequency of subnormal human sperm counts. In any case, the current findings suggest that adapting dietary intake toward eating less saturated fat may be beneficial for both general and reproductive health.

Why is high dietary intake of saturated fat associated with reduced semen quality? What's the connection? Sex steroid hormones in meat, eggs, and dairy may help explain the link between saturated fat intake and declining sperm counts. That's the subject of my video, Dairy Estrogen and Male Fertility.

More on male infertility in my videos Fukushima and Radioactivity in Seafood and Male Fertility and Diet.

Diet also has a role to play in sexual dysfunction:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Julia Mariani / Flickr

Original Link

Why Deep Fried Foods May Cause Cancer

NF-Jul21 Cancer Risk from French fries.jpg

In the latest study on dietary patterns and breast cancer risk among women, healthier eating was associated with eliminating three-quarters of the odds of breast cancer, whereas less healthy eating was associated with up to nearly eight times the odds. Included in the unhealthy eating pattern was the consumption of deep-fried foods, which have previously been linked to breast cancer, pancreatic cancer, lung cancer, oral and throat cancers, esophageal cancer, and cancer of the voicebox. No deep fried foods? What's a Southern belle to do? Instead of deep fried foods, how about the traditional Southern diet, characterized by high intakes of cooked greens, beans, legumes, cabbage, sweet potatoes and cornbread, which may reduce the risk of invasive breast cancer significantly.

What about the consumption of deep-fried foods and risk of prostate cancer? Researchers at the Fred Hutchinson Cancer Research Center and the University of Washington found that eating French fries, fried chicken, fried fish, and doughnuts was associated with about a third greater odds of prostate cancer. After stratifying for tumor aggressiveness, they found slightly stronger associations with more aggressive disease, suggesting that regular intake of deep-fried foods may contribute to the progression of prostate cancer as well.

What in deep fried foods is so bad for us? Just heating oil that hot can generate potentially carcinogenic compounds, and then known carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons form when the muscles of chickens and fish are cooked at that temperature. Deep-fried plants, on the other hand, can form acrylamide.

I did a video about acrylamide back in 2008, suggesting it's a probable human carcinogen (See Acrylamide in French Fries). Since then, studies have suggested pregnant women may want to cut back on French fries to protect the growth of their baby's body and brain. Based on a study (highlighted in my video, Cancer Risk from French Fries) feeding people a little bag of potato chips every day for a month, it now seems acrylamide may also cause inflammation as well, which could explain its purported role in cancer progression.

Acrylamide intake has been associated with endometrial cancer, ovarian cancer, lung cancer, kidney cancer, and esophageal cancer. How much cancer risk are we talking about? Taiwanese researchers examined lifetime cancer risk and French fry consumption. The researchers picked on French fries because they comprise by far the greatest percentage contribution of acrylamide to the diets of children. They estimated that, at most, one or two boys and girls out of every ten thousand would develop cancer eating French fries that they would otherwise not have developed if they hadn't eaten French fries. So it's not as bad as eating something like fried fish, or fried chicken, but how much is that saying?

The level of cancer risk in both boys and girls associated with French fries depends on how long and hot they're fried. In Europe, the food industry swore that they'd self-regulate and control fry times to decrease acrylamide levels, but we've yet to see any subsequent change in acrylamide levels in French fries.

Researchers continue to urge that the cooking temperature should be as low as possible and the cooking time should be as short as possible, "while still maintaining a tasty quality" of course. We wouldn't want to reduce cancer risk too much--they might not taste as good!

Blanching the potatoes first reduces acrylamide formation, but potato chip companies complain that, not only would it muck with the flavor, but it would reduce the nutritional properties by leaching away some of the vitamin C. But if we're relying on potato chips to get our vitamin C, acrylamide is probably the least of our worries.

More on heterocyclic amines:

There are some things we can do to counteract the effects of these carcinogens, though:

I touch on polycyclic aromatic hydrocarbons in Meat Fumes: Dietary Secondhand Smoke and Is Liquid Smoke Flavoring Carcinogenic?
Certain fats may play a role in breast cancer survival as well: Breast Cancer Survival, Butterfat, and Chicken and Breast Cancer Survival and Trans Fat.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: Kim Love / Flickr

Original Link

How Contaminated Are Our Children?

NF-June18 California Children are Contaminated.jpg

In a study highlighted in my video, California Childen Are Contaminated, researchers analyzed the diets of California children ages two through seven to determine the cancer and non-cancer health effects from food contaminant exposures. It turns out food may be the primary route of exposure to toxic heavy metals, persistent pollutants, and pesticides. "Though food-borne toxic contaminants are a concern for all ages, they are of greatest concern for children, who are disproportionately impacted because they're still developing and have greater intake of food and fluids relative to their weight. Pediatric problems that have been linked to preventable environmental toxin exposures include cancer, asthma, lead poisoning, neurobehavioral disorders, learning and developmental disabilities, and birth defects."

The good news is that changing one's diet can change one's exposure. Quoting from the study, "A diet high in fish and animal products, for example, results in greater exposure to persistent pollutants like DDT and dioxins and heavy metals than does a plant-based diet because these compounds bioaccumulate up the food chain." Plants are at the bottom of the food chain. The sample of California kids, however, was not eating a plant-based diet. Cancer benchmark levels were exceeded by all 364 children for arsenic, the banned pesticide dieldrin, a metabolite of DDT called DDE, and dioxins.

Children exceeded safety levels by a greater margin than adults. This is especially of concern for children because all of these compounds are suspected endocrine disruptors and thus may impact normal development. Cancer risk ratios were exceeded by over a factor of 100 for both arsenic and dioxins.

Which foods were the worse? For preschoolers, the number one food source of arsenic was poultry, though for their parents, it was tuna. The number one source of lead was dairy, and for mercury it was seafood. And the number one source of the banned pesticides and dioxins was dairy. (See Preventing Parkinson's Disease With Diet.)

The researchers also recommended children should eat lower quantities of chips, cereal, crackers, and other crispy carbs to reduce acrylamide intake.

The California study didn't split up the groups by gender, but a similar study in Europe found that men had higher levels of some of these pollutants than women. For example, levels of the banned pesticide chlordane were higher in men, but women who never breastfed were right up there alongside men, with the lowest levels found in women who breastfed over 12 months. Therefore, it is likely that the lactation-related reduction in blood pollutant levels partly explains the lower body burdens among women compared with men. So cows can lower their levels by giving some to us, then we can pass it along to our children.

What non-cancer effects might some of these pollutants have? They can affect our immune system. Studies clearly demonstrate the "ability of dioxins and related compounds to have a long-lasting and deleterious impact on immune function." This manifests as increased incidences of respiratory infections, ear infections, cough, and sore throat. At first, most of the data was for during infancy, but now we have follow-up studies showing that the immunosuppressive effects of these toxins may persist into early childhood, so we should try to reduce our exposure as much as possible. Because these pollutants accumulate in animal fat, consuming a plant-based diet-decreasing meat, dairy, and fish consumption-may reduce exposure for children and adults alike.

These findings should come as no surprise to those who saw my video Pollutants in California Breast Tissue. For an overview see CDC Report on Environmental Chemical Exposure and President's Cancer Panel Report on Environmental Risk.

Pollutant exposure may affect the ability to have children in the first place (Male Fertility and Diet and Meat Hormones & Female Infertility). Such a delay, though, may allow one an opportunity to reduce one's toxic burden through dietary change (Hair Testing for Mercury Before Considering Pregnancy and How Long to Detox From Fish Before Pregnancy?).

During pregnancy, pollutants can be transferred directly (DDT in Umbilical Cord Blood), and after pregnancy through breastfeeding (The Wrong Way to Detox). Once our kids are contaminated, How Fast Can Children Detoxify from PCBs? The chemicals have implications for older children too: Protein, Puberty, and Pollutants.

Seafood is not the only source of toxic heavy metals. See:

Videos on primary food sources of other industrial pollutants include:

There are some things we can eat, though, to counteract some of the toxins:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death,More Than an Apple a Day, and From Table to Able.

Image Credit: Kevin Krejci / Flickr

Original Link

How Phytates Fight Cancer Cells

NF-May26 Phytates for Rehabilitating Cancer Cells.jpg

Phytate is a compound found in beans, grains, nuts and seeds. The average daily intake of phytate in vegetarian diets is about twice that of those eating mixed diets of plant and animal foods, which may help explain their low cancer rates. Aside from helping to prevent cancer, dietary phytate has been reported to help prevent kidney stone formation, protect against diabetes mellitus, dental cavities, and heart disease.

Do all these potentially beneficial effects sound too good to be true? Are there other examples of compounds made by plants that can have benefits across multiple diseases? Why yes! Aspirin, for example, which is found throughout the plant kingdom may also account for a variety of plant-based benefits (See Aspirin Levels in Plant Foods).

But of all the things phytates can do, the anticancer activity of phytate (also known as phytic acid, IP6, or inositol hexaphosphate), is considered one of its most important beneficial activities. Dietary phytates are quickly absorbed from the gastrointestinal tract and rapidly taken up by cancer cells throughout the body, and have been shown to inhibit the growth of all tested cancerous cell lines in vitro. Phytates have been shown to inhibit the growth of human leukemia cells, colon cancer cells, both estrogen receptor-positive and negative breast cancer cells, voicebox cancer, cervical cancer, prostate cancer, liver tumors, pancreatic, melanoma, and muscle cancers. All at the same time not affecting normal cells. That's the most important expectation of a good anticancer agent: the ability to only affect cancerous cells and to leave normal cells alone.

In my video, Phytates for Rehabilitating Cancer Cells, you can see how leukemia cells taken from cancer patients are killed by phytates, whereas normal bone marrow cells, are spared. This may explain why bean extracts kill off colon cancer cells in vitro, but leave normal colon cells alone.

What are the mechanisms of action by which phytates battle cancer? In other words, how do phytates fight? How don't they fight? Phytate targets cancer through multiple pathways, a combination of antioxidant, anti-inflammatory, immune-enhancing activities, detox, differentiation, and anti-angiogenesis. In other words, phytate appears to affect all the principal pathways of malignancy.

The antioxidative property is one of the most impressive characteristics of phytate. In fact that's why the meat industry adds phytates to meat to prevent the fat oxidation that begins at the moment of slaughter. Phytates can also act on our immune functions by augmenting natural killer cell activity, the cells in our body that hunt down and dispose of cancer cells, as well as neutrophils, which help form our first line of defense. And then phytates starve tumors as more of a last line of defense. Not only can phytates block the formation of new blood vessels that may be feeding tumors, but disrupt pre-formed capillary tubes, indicating that phytates may not just help blockade tumors, but actively cut off existing supply lines.

What's really remarkable about phytate, though, is that unlike most other anti-cancer agents, it not only causes a reduction in cancer cell growth but also enhances differentiation, meaning it causes cancer cells to stop acting like cancer cells and go back to acting like normal cells. You can see this with colon cancer cells for example. In the presence of phytates, human colon cancer cells mature to structurally and behaviorally resemble normal cells. And this has been demonstrated in leukemia cells, prostate cancer, breast cancer, and muscle cancer cells as well.

For more on the cancer and phytate connection, check out Phytates for the Prevention of Cancer and Phytates for the Treatment of Cancer.

This video reminds me of my video on the spice, turmeric, Turmeric Curcumin Reprogramming Cancer Cell Death.

What else can we eat to improve the cancer-fighting front of our immune system? See Boosting Natural Killer Cell Activity.

More on the concept of starving tumors of their blood supply in Anti-Angiogenesis: Cutting Off Tumor Supply Lines.

Is there clinical evidence of plants actually reversing cancer progression? You won't believe your eyes:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: Avi / Flickr

Original Link

Why are Cancer Rates so Low in India?

NF-May5 Back to Our Roots- Curry and Cancer.jpg

It is estimated that many tumors start around the age of 20. However, detection of cancer is normally around the age of 50 or later. Thus, it takes cancer decades to incubate. Why does it take so long? Recent studies indicate that in any given type of cancer, hundreds of different genes must be modified to change a normal cell into a cancer cell. Although cancers are characterized by the dysregulation of cell signaling pathways at multiple steps, most current anticancer therapies involve the modulation of a single target. Chemotherapy has gotten incredibly specific, but the ineffectiveness, lack of safety, and high cost of these monotargeted therapies has led to real disappointment, and drug companies are now trying to develop chemo drugs that take a multitargeted approach.

Many plant-based products, however, accomplish multitargeting naturally and are inexpensive and safe compared to drugs. However, because drug companies are not usually able to secure intellectual property rights to plants, the development of plant-based anticancer therapies has not been prioritized. They may work (and work better for all we know), and they may be safer, or even fully risk free.

If we were going to choose one plant-based product to start testing, we might choose curcumin, the pigment in the spice turmeric (the reason curry powder looks yellow). Before we start throwing money at research, we might want to ask some basic questions, like "Do populations that eat a lot of turmeric have lower cancer rates?" The incidence of cancer does appear to be significantly lower in regions where turmeric is heavily consumed. Population-based data indicate that some extremely common cancers in the Western world are much less prevalent in regions where turmeric is widely consumed in the diet.

For example, "overall cancer rates are much lower in India than in western countries." U.S. men get 23 times more prostate cancer than men in India. Americans get between 8 and 14 times the rate of melanoma, 10 to 11 times more colorectal cancer, 9 times more endometrial cancer, 7 to 17 times more lung cancer, 7 to 8 times more bladder cancer, 5 times more breast cancer, and 9 to 12 times more kidney cancer. This is not mere 5, 10, or 20 percent more, but 5, 10, or 20 times more. Hundreds of percent more breast cancer, thousands of percent more prostate cancer--differences even greater than some of those found in the China Study.

The researchers in this study, highlighted in my video Back to Our Roots: Curry and Cancer, conclude: "Because Indians account for one-sixth of the world's population, and have some of the highest spice consumption in the world, epidemiological studies in this country have great potential for improving our understanding of the relationship between diet and cancer. The lower rates of cancer may, of course, not be due to higher spice intake. Several dietary factors may contribute to the low overall rate of cancer in India. Among them are a "relatively low intake of meat and a mostly plant-based diet, in addition to the high intake of spices." Forty percent of Indians are vegetarians, and even the ones that do eat meat don't eat a lot. And it's not only what they don't eat, but what they do. India is one of the largest producers and consumers of fresh fruits and vegetables, and Indians eat a lot of pulses (legumes), such as beans, chickpeas, and lentils. They also eat a wide variety of spices in addition to turmeric that constitute, by weight, the most antioxidant-packed class of foods in the world.

Population studies can't prove a correlation between dietary turmeric and decreased cancer risk, but they can certainly inspire a bunch of research. So far, curcumin has been tested against a variety of human cancers, including colorectal cancer, pancreatic cancer, breast, prostate, multiple myeloma, lung cancer, and head and neck cancer, for both prevention and treatment. For more information on turmeric and curcumin, check out Carcinogen Blocking Effects of Turmeric Curcumin and Turmeric Curcumin Reprogramming Cancer Cell Death.

I'm working on another dozen or so videos on this amazing spice. This is what I have so far:

Amla, dried Indian gooseberry powder, is another promising dietary addition:

I add amla to my Pink Juice with Green Foam recipe. Not all natural products from India are safe, though. See, for example, my video Some Ayurvedic Medicine Worse than Lead Paint Exposure.

More on the antioxidant concentration in spices in general in Antioxidants in a Pinch. Why do antioxidants matter? See Food Antioxidants and Cancer and Food Antioxidants, Stroke, and Heart Disease.

Which fruits and vegetables might be best? See #1 Anticancer Vegetable and Best Fruits for Cancer Prevention.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: peddhapati / Flickr

Original Link