How a Low-Carb Diet is Metabolically Like Being Obese

NF-Nov22 The Spillover Effect copy.jpg

Free fatty acids (meaning fat circulating in the bloodstream not packaged into triglycerides) result in inflammation, toxic fat breakdown products, and oxidative stress, which can gum up the insulin receptor pathway and lead to insulin resistance in our muscles. Insulin resistance is what causes prediabetes and type 2 diabetes. I explain the process in my video What Causes Insulin Resistance? As the level of fat in the blood rises, the body's ability to clear sugar from the blood drops dramatically.

Where does this fat in our blood that's wreaking all this havoc come from? It comes from the fat that we eat and from the fat that we wear.

The number of fat cells we have stays constant in adulthood. The way researchers figured that out is by measuring the amount of radioactive carbon still trapped in our DNA from all the nuclear bomb tests. After massive weight loss, our fat cells shrink as they offload fat, but the number stays the same. Conversely, when we gain weight, our fat cells stretch as we pack more and more into each individual fat cell. So, when our belly, butt, or thighs get big, we're not adding more fat cells, we're just cramming more fat into each cell. At a certain point, our cells become so bloated that they spill fat back into the bloodstream.

This is called the spillover effect. Not only does an obese person have more fat, but they're constantly spilling that fat into their bloodstream. So that could be the link between obesity and diabetes. Fat is spilling out from our fat cells and gets lodged in our muscle cells, leading to the insulin resistance that promotes the onset of type 2 diabetes. I show this in my video The Spillover Effect Links Obesity to Diabetes.

The fat can also enter our bloodstream through our mouth. If you put people on a low carb diet, fat builds up in their muscle within two hours and insulin sensitivity drops. And the more fat found in the muscle, the lower the ability to clear sugar from the blood. It doesn't take years for this to happen, just hours after fatty foods go into our mouths. A fat-rich diet can increase fat in the blood and this increase is accompanied by a decrease in insulin sensitivity.

Studies clearly demonstrate that fat in the blood directly inhibit glucose transport and usage in our muscles, which is responsible for clearing about 85% of the glucose out of blood. These findings indicate that fat consumption can play an important role in the development of insulin resistance.

Normally we only have 10 to 50 micromoles of free fat floating around in our blood stream at any one time, but those who are obese have between 60 to 80. But, we can reach 80 just eating a high fat diet. So a skinny person eating a low-carb diet can have the same level of fat in their blood that obese people do. Similarly, being obese is like eating some horrible bacon and butter diet all day, because obese persons are constantly spilling fat into their bloodstream, no matter what goes in their mouth.

Are all types of fat the same? Find out the answer in my video Lipotoxicity: How Saturated Fat Raises Blood Sugar.

The fat leaking into our bloodstream may also contain fat-soluble pollutants that accumulated from our diet: Pollutants in Salmon and Our Own Fat.

The spillover effect may also help explain the increased heart disease risk associated with obesity: Low Carb Diets and Coronary Blood Flow.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: [Eugene Bochkarev] © 123RF.com

Original Link

How a Low-Carb Diet is Metabolically Like Being Obese

NF-Nov22 The Spillover Effect copy.jpg

Free fatty acids (meaning fat circulating in the bloodstream not packaged into triglycerides) result in inflammation, toxic fat breakdown products, and oxidative stress, which can gum up the insulin receptor pathway and lead to insulin resistance in our muscles. Insulin resistance is what causes prediabetes and type 2 diabetes. I explain the process in my video What Causes Insulin Resistance? As the level of fat in the blood rises, the body's ability to clear sugar from the blood drops dramatically.

Where does this fat in our blood that's wreaking all this havoc come from? It comes from the fat that we eat and from the fat that we wear.

The number of fat cells we have stays constant in adulthood. The way researchers figured that out is by measuring the amount of radioactive carbon still trapped in our DNA from all the nuclear bomb tests. After massive weight loss, our fat cells shrink as they offload fat, but the number stays the same. Conversely, when we gain weight, our fat cells stretch as we pack more and more into each individual fat cell. So, when our belly, butt, or thighs get big, we're not adding more fat cells, we're just cramming more fat into each cell. At a certain point, our cells become so bloated that they spill fat back into the bloodstream.

This is called the spillover effect. Not only does an obese person have more fat, but they're constantly spilling that fat into their bloodstream. So that could be the link between obesity and diabetes. Fat is spilling out from our fat cells and gets lodged in our muscle cells, leading to the insulin resistance that promotes the onset of type 2 diabetes. I show this in my video The Spillover Effect Links Obesity to Diabetes.

The fat can also enter our bloodstream through our mouth. If you put people on a low carb diet, fat builds up in their muscle within two hours and insulin sensitivity drops. And the more fat found in the muscle, the lower the ability to clear sugar from the blood. It doesn't take years for this to happen, just hours after fatty foods go into our mouths. A fat-rich diet can increase fat in the blood and this increase is accompanied by a decrease in insulin sensitivity.

Studies clearly demonstrate that fat in the blood directly inhibit glucose transport and usage in our muscles, which is responsible for clearing about 85% of the glucose out of blood. These findings indicate that fat consumption can play an important role in the development of insulin resistance.

Normally we only have 10 to 50 micromoles of free fat floating around in our blood stream at any one time, but those who are obese have between 60 to 80. But, we can reach 80 just eating a high fat diet. So a skinny person eating a low-carb diet can have the same level of fat in their blood that obese people do. Similarly, being obese is like eating some horrible bacon and butter diet all day, because obese persons are constantly spilling fat into their bloodstream, no matter what goes in their mouth.

Are all types of fat the same? Find out the answer in my video Lipotoxicity: How Saturated Fat Raises Blood Sugar.

The fat leaking into our bloodstream may also contain fat-soluble pollutants that accumulated from our diet: Pollutants in Salmon and Our Own Fat.

The spillover effect may also help explain the increased heart disease risk associated with obesity: Low Carb Diets and Coronary Blood Flow.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: [Eugene Bochkarev] © 123RF.com

Original Link

Fat is the Cause of Type 2 Diabetes

NF-Nov17 What Causes Insulin Resistance copy.jpg

Studies dating back nearly a century noted a striking finding: If you take young, healthy people and split them up into two groups--half on a fat-rich diet and half on a carbohydrate-rich diet--we find that within just two days, glucose intolerance skyrockets in the fat group. The group that had been shoveling fat in ended up with twice the blood sugar. As the amount of fat in the diet goes up, so does one's blood sugar. Why would eating fat lead to higher blood sugar levels? It would take scientists nearly seven decades to unravel this mystery, but it would end up holding the key to our current understanding of the cause of type 2 diabetes.

The reason athletes carb-load before a race is to build up the fuel supply within their muscles. We break down the starch into glucose in our digestive tract, it circulates as blood glucose (blood sugar) and is taken up by our muscles to be stored and burnt for energy.

Blood sugar, though, is like a vampire. It needs an invitation to come into our cells. That invitation is insulin. Insulin is the key that unlocks the door that lets glucose in the blood enter muscle cells. When insulin attaches to the insulin receptor on the cell, it activates an enzyme, which activates another enzyme, which activates two more enzymes, which finally activates glucose transport (as diagrammed in my video What Causes Insulin Resistance?).

What if there was no insulin? Blood sugar would be stuck in the bloodstream banging on the door to our muscles, unable to get inside. With nowhere to go, sugar levels in the blood would rise and rise. That's what happens in type 1 diabetes: the cells in the pancreas that make insulin get destroyed, and without insulin, sugar in the blood can't get out of the blood into the muscles, and so blood sugar rises. But there's a second way we could end up with high blood sugar.

What if there's enough insulin, but the insulin doesn't work? The key is there, but something's gummed up the lock. This is insulin resistance. Our muscle cells become resistant to the effect of insulin. What's gumming up the locks on our muscle cells? What's preventing insulin from letting glucose in? Tiny droplets of fat inside our muscle cells, so-called intramyocellular lipid.

Fat in the bloodstream can build up inside the muscle cell, creating toxic fatty breakdown products and free radicals that block the insulin signaling process. No matter how much insulin we have in our blood, it's not able to sufficiently open the glucose gates and blood sugar levels build up in the blood. And this can happen within three hours. One hit of fat can start causing insulin resistance, inhibiting blood sugar uptake after just 160 minutes.

This mechanism by which fat induces insulin resistance wasn't known until fancy MRI techniques were developed to see what was happening inside people's muscles as fat was infused into their bloodstream. That's how we found that elevation of fat levels in the blood causes insulin resistance by inhibition of glucose transport into the muscles.

We can also do the opposite experiment. Lower the level of fat in people's blood and the insulin resistance comes right down. If we clear the fat out of the blood, we also clear the sugar out. That explains the finding that on the high fat, ketogenic diet, insulin doesn't work very well. Our bodies become insulin resistant. But as the amount of fat in our diet gets lower and lower, insulin works better and better--a clear demonstration that the sugar tolerance of even healthy individuals can be impaired by administering a low-carb, high-fat diet. We can decrease insulin resistance, however, by decreasing fat intake.

The effect is really dramatic--check out at least the end of my video What Causes Insulin Resistance? to see what happens as dietary fat intake drops.

The most concerning downside of low-carb diets, though, is heart health: Low Carb Diets and Coronary Blood Flow

This is the first of a 3-part series on the cause of type 2 diabetes, so as to better understand dietary interventions to prevent and treat the epidemic. In The Spillover Effect Links Obesity to Diabetes, I talk about how that fat can come either from our diet or excess fat stores, and then in Lipotoxicity: How Saturated Fat Raises Blood Sugar, I show how not all fats are equally to blame.

Here are some of my recent diabetes videos:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: [Gema Ibarra] © 123RF.com

Original Link

Fat is the Cause of Type 2 Diabetes

NF-Nov17 What Causes Insulin Resistance copy.jpg

Studies dating back nearly a century noted a striking finding: If you take young, healthy people and split them up into two groups--half on a fat-rich diet and half on a carbohydrate-rich diet--we find that within just two days, glucose intolerance skyrockets in the fat group. The group that had been shoveling fat in ended up with twice the blood sugar. As the amount of fat in the diet goes up, so does one's blood sugar. Why would eating fat lead to higher blood sugar levels? It would take scientists nearly seven decades to unravel this mystery, but it would end up holding the key to our current understanding of the cause of type 2 diabetes.

The reason athletes carb-load before a race is to build up the fuel supply within their muscles. We break down the starch into glucose in our digestive tract, it circulates as blood glucose (blood sugar) and is taken up by our muscles to be stored and burnt for energy.

Blood sugar, though, is like a vampire. It needs an invitation to come into our cells. That invitation is insulin. Insulin is the key that unlocks the door that lets glucose in the blood enter muscle cells. When insulin attaches to the insulin receptor on the cell, it activates an enzyme, which activates another enzyme, which activates two more enzymes, which finally activates glucose transport (as diagrammed in my video What Causes Insulin Resistance?).

What if there was no insulin? Blood sugar would be stuck in the bloodstream banging on the door to our muscles, unable to get inside. With nowhere to go, sugar levels in the blood would rise and rise. That's what happens in type 1 diabetes: the cells in the pancreas that make insulin get destroyed, and without insulin, sugar in the blood can't get out of the blood into the muscles, and so blood sugar rises. But there's a second way we could end up with high blood sugar.

What if there's enough insulin, but the insulin doesn't work? The key is there, but something's gummed up the lock. This is insulin resistance. Our muscle cells become resistant to the effect of insulin. What's gumming up the locks on our muscle cells? What's preventing insulin from letting glucose in? Tiny droplets of fat inside our muscle cells, so-called intramyocellular lipid.

Fat in the bloodstream can build up inside the muscle cell, creating toxic fatty breakdown products and free radicals that block the insulin signaling process. No matter how much insulin we have in our blood, it's not able to sufficiently open the glucose gates and blood sugar levels build up in the blood. And this can happen within three hours. One hit of fat can start causing insulin resistance, inhibiting blood sugar uptake after just 160 minutes.

This mechanism by which fat induces insulin resistance wasn't known until fancy MRI techniques were developed to see what was happening inside people's muscles as fat was infused into their bloodstream. That's how we found that elevation of fat levels in the blood causes insulin resistance by inhibition of glucose transport into the muscles.

We can also do the opposite experiment. Lower the level of fat in people's blood and the insulin resistance comes right down. If we clear the fat out of the blood, we also clear the sugar out. That explains the finding that on the high fat, ketogenic diet, insulin doesn't work very well. Our bodies become insulin resistant. But as the amount of fat in our diet gets lower and lower, insulin works better and better--a clear demonstration that the sugar tolerance of even healthy individuals can be impaired by administering a low-carb, high-fat diet. We can decrease insulin resistance, however, by decreasing fat intake.

The effect is really dramatic--check out at least the end of my video What Causes Insulin Resistance? to see what happens as dietary fat intake drops.

The most concerning downside of low-carb diets, though, is heart health: Low Carb Diets and Coronary Blood Flow

This is the first of a 3-part series on the cause of type 2 diabetes, so as to better understand dietary interventions to prevent and treat the epidemic. In The Spillover Effect Links Obesity to Diabetes, I talk about how that fat can come either from our diet or excess fat stores, and then in Lipotoxicity: How Saturated Fat Raises Blood Sugar, I show how not all fats are equally to blame.

Here are some of my recent diabetes videos:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: [Gema Ibarra] © 123RF.com

Original Link

The Natural Human Diet

NF-Nov15 The Problem with the Paleo Diet Argument copy.jpg

Our epidemics of dietary disease have prompted a great deal of research into what humans are meant to eat for optimal health. In 1985, an influential article highlighted in my video The Problem With the Paleo Diet Argument was published proposing that our chronic diseases stem from a disconnect between what our bodies ate while evolving during the Stone Age (about 2 million years ago) and what we're stuffing our face with today. The proposal advocated for a return towards a hunter-gatherer type diet of lean meat, fruits, vegetables, and nuts.

It's reasonable to assume our nutritional requirements were established in the prehistoric past. However, the question of which prehistoric past we should emulate remains. Why just the last 2 million? We've been evolving for about 20 million years since our last common great ape ancestor, during which our nutrient requirements and digestive physiology were set down. Therefore our hunter-gatherer days at the tail end probably had little effect. What were we eating for the first 90% of our evolution? What the rest of the great apes ended up eating--95 percent or more plants.

This may explain why we're so susceptible to heart disease. For most of human evolution, cholesterol may have been virtually absent from the diet. No bacon, butter, or trans fats; and massive amounts of fiber, which pulls cholesterol from the body. This could have been a problem since our body needs a certain amount of cholesterol, but our bodies evolve not only to make cholesterol, but also to preserve it and recycle it.

If we think of the human body as a cholesterol-conserving machine, then plop it into the modern world of bacon, eggs, cheese, chicken, pork, and pastry; it's no wonder artery-clogging heart disease is our #1 cause of death. What used to be adaptive for 90% of our evolution--holding on to cholesterol at all costs since we weren't getting much in our diet--is today maladaptive, a liability leading to the clogging of our arteries. Our bodies just can't handle it.

As the editor-in-chief of the American Journal of Cardiology noted 25 years ago, no matter how much fat and cholesterol carnivores eat, they do not develop atherosclerosis. We can feed a dog 500 eggs worth of cholesterol and they just wag their tail; a dog's body is used to eating and getting rid of excess cholesterol. Conversely, within months a fraction of that cholesterol can start clogging the arteries of animals adapted to eating a more plant-based diet.

Even if our bodies were designed by natural selection to eat mostly fruit, greens and seeds for 90% of our evolution, why didn't we better adapt to meat-eating in the last 10%, during the Paleolithic? We've had nearly 2 million years to get used to all that extra saturated fat and cholesterol. If a lifetime of eating like that clogs up nearly everyone's arteries, why didn't the genes of those who got heart attacks die off and get replaced by those that could live to a ripe old age with clean arteries regardless of what they ate? Because most didn't survive into old age.

Most prehistoric peoples didn't live long enough to get heart attacks. When the average life expectancy is 25 years old, then the genes that get passed along are those that can live to reproductive age by any means necessary, and that means not dying of starvation. The more calories in food, the better. Eating lots of bone marrow and brains, human or otherwise, would have a selective advantage (as would discovering a time machine stash of Twinkies for that matter!). If we only have to live long enough to get our kids to puberty to pass along our genes, then we don't have to evolve any protections against the ravages of chronic disease.

To find a population nearly free of chronic disease in old age, we don't have to go back a million years. In the 20th century, networks of missionary hospitals in rural Africa found coronary artery disease virtually absent, and not just heart disease, but high blood pressure, stroke, diabetes, common cancers, and more. In a sense, these populations in rural China and Africa were eating the type of diet we've been eating for 90% of the last 20 million years, a diet almost exclusively of plant foods.

How do we know it was their diet and not something else? In the 25 year update to their original paleo paper, the authors tried to clarify that they did not then and do not now propose that people adopt a particular diet just based on what our ancient ancestors ate. Dietary recommendations must be put to the test. That's why the pioneering research from Pritikin, Ornish, and Esselstyn is so important, showing that plant-based diets can not only stop heart disease but have been proven to reverse it in the majority of patients. Indeed, it's the only diet that ever has.

For more on the absence of Western diseases in plant-based rural populations, see for example:

I've touched on "paleo" diets in the past:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nathan Rupert / Flickr

Original Link

The Natural Human Diet

NF-Nov15 The Problem with the Paleo Diet Argument copy.jpg

Our epidemics of dietary disease have prompted a great deal of research into what humans are meant to eat for optimal health. In 1985, an influential article highlighted in my video The Problem With the Paleo Diet Argument was published proposing that our chronic diseases stem from a disconnect between what our bodies ate while evolving during the Stone Age (about 2 million years ago) and what we're stuffing our face with today. The proposal advocated for a return towards a hunter-gatherer type diet of lean meat, fruits, vegetables, and nuts.

It's reasonable to assume our nutritional requirements were established in the prehistoric past. However, the question of which prehistoric past we should emulate remains. Why just the last 2 million? We've been evolving for about 20 million years since our last common great ape ancestor, during which our nutrient requirements and digestive physiology were set down. Therefore our hunter-gatherer days at the tail end probably had little effect. What were we eating for the first 90% of our evolution? What the rest of the great apes ended up eating--95 percent or more plants.

This may explain why we're so susceptible to heart disease. For most of human evolution, cholesterol may have been virtually absent from the diet. No bacon, butter, or trans fats; and massive amounts of fiber, which pulls cholesterol from the body. This could have been a problem since our body needs a certain amount of cholesterol, but our bodies evolve not only to make cholesterol, but also to preserve it and recycle it.

If we think of the human body as a cholesterol-conserving machine, then plop it into the modern world of bacon, eggs, cheese, chicken, pork, and pastry; it's no wonder artery-clogging heart disease is our #1 cause of death. What used to be adaptive for 90% of our evolution--holding on to cholesterol at all costs since we weren't getting much in our diet--is today maladaptive, a liability leading to the clogging of our arteries. Our bodies just can't handle it.

As the editor-in-chief of the American Journal of Cardiology noted 25 years ago, no matter how much fat and cholesterol carnivores eat, they do not develop atherosclerosis. We can feed a dog 500 eggs worth of cholesterol and they just wag their tail; a dog's body is used to eating and getting rid of excess cholesterol. Conversely, within months a fraction of that cholesterol can start clogging the arteries of animals adapted to eating a more plant-based diet.

Even if our bodies were designed by natural selection to eat mostly fruit, greens and seeds for 90% of our evolution, why didn't we better adapt to meat-eating in the last 10%, during the Paleolithic? We've had nearly 2 million years to get used to all that extra saturated fat and cholesterol. If a lifetime of eating like that clogs up nearly everyone's arteries, why didn't the genes of those who got heart attacks die off and get replaced by those that could live to a ripe old age with clean arteries regardless of what they ate? Because most didn't survive into old age.

Most prehistoric peoples didn't live long enough to get heart attacks. When the average life expectancy is 25 years old, then the genes that get passed along are those that can live to reproductive age by any means necessary, and that means not dying of starvation. The more calories in food, the better. Eating lots of bone marrow and brains, human or otherwise, would have a selective advantage (as would discovering a time machine stash of Twinkies for that matter!). If we only have to live long enough to get our kids to puberty to pass along our genes, then we don't have to evolve any protections against the ravages of chronic disease.

To find a population nearly free of chronic disease in old age, we don't have to go back a million years. In the 20th century, networks of missionary hospitals in rural Africa found coronary artery disease virtually absent, and not just heart disease, but high blood pressure, stroke, diabetes, common cancers, and more. In a sense, these populations in rural China and Africa were eating the type of diet we've been eating for 90% of the last 20 million years, a diet almost exclusively of plant foods.

How do we know it was their diet and not something else? In the 25 year update to their original paleo paper, the authors tried to clarify that they did not then and do not now propose that people adopt a particular diet just based on what our ancient ancestors ate. Dietary recommendations must be put to the test. That's why the pioneering research from Pritikin, Ornish, and Esselstyn is so important, showing that plant-based diets can not only stop heart disease but have been proven to reverse it in the majority of patients. Indeed, it's the only diet that ever has.

For more on the absence of Western diseases in plant-based rural populations, see for example:

I've touched on "paleo" diets in the past:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nathan Rupert / Flickr

Original Link

Paleo Diet May Undermine Benefit of CrossFit Exercise

NF-Sept6 Paleo Diets May Negate Benefits of Exercise.jpeg

Much of the low-carb and paleo reasoning revolves around insulin. To quote a paleo blogger, "carbohydrates increase insulin, the root of all evil when it comes to dieting and health." So the logic follows that because carbs increase insulin, we should stick mostly to meat, which is fat and protein with no carbs, so no increase in insulin, right?

Wrong.

We've known for half a century that if you give someone just a steak: no carbs, no sugar, no starch; their insulin goes up. Carbs make our insulin go up, but so does protein.

In 1997 an insulin index of foods was published, ranking 38 foods to determine which stimulates higher insulin levels. Researchers compared a large apple and all its sugar, a cup of oatmeal packed with carbs, a cup and a half of white flour pasta, a big bun-less burger with no carbs at all, to half of a salmon fillet. As you can see in the graph in my video Paleo Diets May Negate Benefits of Exercise, the meat produced the highest insulin levels.

Researchers only looked at beef and fish, but subsequent data showed that that there's no significant difference between the insulin spike from beef, chicken, or pork--they're all just as high. Thus, protein and fat rich foods may induce substantial insulin secretion. In fact, meat protein causes as much insulin release as pure sugar.

So, based on the insulin logic, if low-carbers and paleo folks really believed insulin to be the root of all evil, then they would be eating big bowls of spaghetti day in and day out before they would ever consume meat.

They are correct in believing that having hyperinsulinemia, high levels of insulin in the blood like type 2 diabetics have, is not a good thing, and may increase cancer risk. But if low-carb and paleo dieters stuck to their own insulin theory, then they would be out telling everyone to start eating plant-based. Vegetarians have significantly lower insulin levels even at the same weight as omnivores. This is true for ovo-lacto-vegetarians, lacto-vegetarians, and vegans. Meat-eaters have up to 50% higher insulin levels.

Researchers from the University of Memphis put a variety of people on a vegan diet (men, women, younger folks, older folks, skinny and fat) and their insulin levels dropped significantly within just three weeks. And then, just by adding egg whites back to their diet, their insulin production rose 60% within four days.

In a study out of MIT, researchers doubled participants' carbohydrate intake, and their insulin levels went down. Why? Because the researchers weren't feeding people jellybeans and sugar cookies, they were feeding people whole, plant foods, lots of whole grains, beans, fruits, and vegetables.

What if we put someone on a very-low carb diet, like an Atkins diet? Low carb advocates such as Dr. Westman assumed that it would lower insulin levels. Dr. Westman is the author of the new Atkins books, after Dr. Atkins died obese with, according to the medical examiner, a history of heart attack, congestive heart failure, and hypertension. But, Dr. Westman was wrong in his assumption. There are no significant drop in insulin levels on very low-carb diets. Instead, there is a significant rise in LDL cholesterol levels, the number one risk factor for our number one killer, heart disease.

Atkins is an easy target though. No matter how many "new" Atkins diets that come out, it's still old news. What about the paleo diet? The paleo movement gets a lot of things right. They tell people to ditch dairy and doughnuts, eat lots of fruits, nuts, and vegetables, and cut out a lot of processed junk food. But a new study published in the International Journal of Exercise Science is pretty concerning. Researchers took young healthy people, put them on a Paleolithic diet along with a CrossFit-based, high-intensity circuit training exercise program.

If you lose enough weight exercising, you can temporarily drop our cholesterol levels no matter what you eat. You can see that with stomach stapling surgery, tuberculosis, chemotherapy, a cocaine habit, etc. Just losing weight by any means can lower cholesterol, which makes the results of the Paleo/Crossfit study all the more troubling. After ten weeks of hardcore workouts and weight loss, the participants' LDL cholesterol still went up. And it was even worse for those who started out the healthiest. Those starting out with excellent LDL's (under 70), had a 20% elevation in LDL cholesterol, and their HDL dropped. Exercise is supposed to boost our good cholesterol, not lower it.

The paleo diet's deleterious impact on blood fats was not only significant, but substantial enough to counteract the improvements commonly seen with improved fitness and body composition. Exercise is supposed to make things better.

On the other hand, if we put people instead on a plant-based diet and a modest exercise program, mostly just walking-based; within three weeks their bad cholesterol can drop 20% and their insulin levels 30%, despite a 75-80% carbohydrate diet, whereas the paleo diets appeared to "negate the positive effects of exercise."

I touched on paleo diets before in Paleolithic Lessons, and I featured a guest blog on the subject: Will The Real Paleo Diet Please Stand Up?

but my favorite paleo videos are probably The Problem With the Paleo Diet Argument and Lose Two Pounds in One Sitting: Taking the Mioscenic Route.

I wrote a book on low carb diets in general (now available free full-text online) and touched on it in Atkins Diet: Trouble Keeping It Up and Low Carb Diets and Coronary Blood Flow.

And if you're thinking, but what about the size of the cholesterol, small and dense versus large and fluffy? Please see my video Does Cholesterol Size Matter?

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Image Credit: Vincent Lit / Flickr

Original Link

Introducing the Kempner Rice Diet

Aug16-2.jpg

Franklin Delano Roosevelt brought us through the Great Depression and World War II. Who knows how history would have been different had he not died in his fourth term as President from a massive stroke. In the following days and months, we learned that Roosevelt had suffered from severe high blood pressure for years. In spite of this, he was on no medications or other treatments. The reason for the lack of treatment is stark and simple: there were none. The state of the art at that time was death. Death, from so-called malignant hypertension--out-of-control high blood pressure--for which, it was thought, there was no remedy. But they were wrong. There was Dr. Walter Kempner and his rice-fruit diet.

A physician-scientist, Kempner trained with the best, fled Nazi Germany and set up shop at Duke, where he began treating malignant hypertension patients with a radical diet consisting of only white rice and fruit, with strikingly favorable results: a rapid reduction in blood pressure, rapid improvement in kidney failure, eye pressure, heart failure and other manifestations of this previously fatal illness.

He figured that if a low salt diet helped with blood pressure, a low protein diet helped with kidney function, and a low fat and cholesterol diet helped the heart, why not take it to its logical conclusion and design a no-salt, no cholesterol diet of almost pure carbohydrate. So, he designed a diet with less sodium than any low-sodium diet, less protein than any low-protein diet, and less cholesterol and fat than any other low-fat diet.

His hope was that it would just stop progression of the disease. Instead, something miraculous happened. In about two-thirds of cases, the disease reversed. There were reversals of heart failure, reversals of eye damage, and reversals of kidney failure. At the time, this was effectively a terminal disease where people just had a few months to live, but with Kempner's rice diet, they got better. In my video Kempner Rice Diet: Whipping Us Into Shape, you can see before and after pictures of the back of people's eyes. They started out swollen, bloody and leaking and then were nearly normal in a matter of months.

After being effectively cured by the diet over many months, many patients could then relax the diet to a more conventional plant-based diet and go on to live a normal, active life. The rice diet may actually drop blood pressures too low, so we have to add back other foods to bring the pressures back up to normal.

An editorial in the New England Journal of Medicine described Kempner's results as "little short of miraculous." Practically speaking, there's probably no more effective diet for obese cardiac patients. The problem, though, is that most physicians lack the extraordinary persuasive powers required to keep the patient eating such a restricted diet.

When Dr. Caldwell Esselstyn presented his study results demonstrating in some cases reversal of near end-stage heart disease with a whole food plant-based diet, the Chair of Cleveland Clinic cardiology department asked, "How can we expect patients to stay on a strict diet like this when we can't even get them to quit smoking?" Just like penicillin drugs don't work at all unless we take them, plant-based diets don't work unless we actually eat them.

The answer may be that the physician must have a zealous belief in the diet and must convey that passion to the patients. For Kempner, to keep his patients on the rice diet, he "brow-beat, yelled at, and castigated them when he caught them straying." And he didn't just browbeat them; he sometimes actually beat them. It came out in a lawsuit in which a former patient sued Dr. Kempner, claiming that he had literally whipped her and other patients to motivate them to stick to the diet.

Reminds me of the famous diabetes physician back in the 1800s, Arnoldo Cantani, who knew the remedy for diabetes was not in the drugstore, but rather the kitchen. To ensure compliance, if necessary, he would lock a patient up in a room for six weeks.

Thankfully, in terms of personality, Dr. Esselstyn is the opposite of Dr. Kempner. He is polite, soft-spoken, gentle and able to keep his patients on track without whipping them. And last but not least, Esselstyn walks the talk, following the diet himself, whereas Kempner died of a heart attack (though at the age of 94). Kempner's work continues on in Durham, where they continue a relaxed version of the diet, allowing actual vegetables.

A year before Roosevelt died, Kempner had already published his miraculous results. It seems highly likely that had the rice diet been "provided to President Roosevelt a year before his death, his disease might have been controlled before his fatal stroke, and that this fatal event could have been averted."


For those unfamiliar with Dr. Esselstyn's work, check out:

Kempner was a lifestyle medicine pioneer. What's lifestyle medicine? See, for example:

For more on Kempner's work, see:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Original Link

Where are the Lowest Rates of Alzheimer’s in the World?

NF-Nov12 Alzheimer's Disease  Grain Brain or Meathead.jpg

The rates of dementia differ greatly around the world, from the lowest rates in Africa, India, and South Asia, to the highest rates in Western Europe and especially North America. Is it all just genetics? Well, the incidence of dementia and Alzheimer's disease is significantly lower for Africans in Nigeria than for African Americans in Indianapolis, for example--up to five times lower.

Alzheimer's rates of Japanese-Americans living in the U.S. are closer to that of Americans than to Japanese. When people move from their homeland to the United States, Alzheimer's rates can increase dramatically. Therefore, when Africans or Asians live in the United States and adopt a Western diet, their increase in Alzheimer's risk suggests that it's not genetics.

Unfortunately, one doesn't have to move to the West to adopt a Western diet. The prevalence of dementia in Japan has shot up over the last few decades. Mechanisms to explain this in Japan include increases in cholesterol, saturated fat, and iron from increases in the consumption of animal products. Traditional diets are generally weighted toward vegetable products such as grains and away from animal products. But since 1960, the diet in Japan has changed from a more traditional rice-based diet to one with a preponderance of meat. From 1961 to 2008, meat and animal fat increased considerably, whereas the rice supply dropped. The dietary factor most strongly associated with the rise in Alzheimer's disease in Japan was the increased consumption of animal fat.

A similar analysis in China arrived at the same conclusion. As the authors of the Japan study (highlighted in the video, Alzheimer's Disease: Grain Brain or Meathead?) note, on the basis of these findings, the rate of Alzheimer's disease and dementia will "continue to rise unless dietary patterns change to those with less reliance on animal products." This is consistent with data showing those who eat vegetarian appear two to three times less likely to become demented, and the longer one eats meat-free, the lower the associated risk of dementia.

Globally, the lowest validated rates of Alzheimer's in the world are rural India, where they eat low meat, high grain, high bean, high carb diets. It's possible that the apparent protective association between rice and Alzheimer's is due to the fact that the drop of rice consumption was accompanied by a rise in meat consumption, but other population studies have found that dietary grains appear strongly protective in relation to Alzheimer's disease. In other words, perhaps, don't pass on the grain, but "pass the grain to spare the brain."

A few previous videos on Alzheimer's and maintaining cognitive function:

More on the consequences of carbophobia here:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Bob Peters / Flickr

Original Link

Dr. Greger’s 2015 Live Year-in-Review Presentation

Food as Medicine

View my new live presentation here: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet

Every year I scour the world's scholarly literature on clinical nutrition, pulling together what I find to be the most interesting, practical, and groundbreaking science on how to best feed ourselves and our families. I start with the thousands of papers published annually on nutrition (27,000 this year--a new record!) and, thanks to a crack team of volunteers (and now staff!), I'm able to whittle those down (to a mere 8,000 this year). They are then downloaded, categorized, read, analyzed, and churned into the few hundred short videos. This allows me to post new videos and articles every day, year-round, to NutritionFacts.org. This certainly makes the site unique. There's no other science-based source for free daily updates on the latest discoveries in nutrition. The problem is that the amount of information can be overwhelming.

Currently I have more than a thousand videos covering 1,931 nutrition topics. Where do you even begin? Many have expressed their appreciation for the breadth of material, but asked that I try to distill it into a coherent summary of how best to use diet to prevent and treat chronic disease. I took this feedback to heart and in 2012 developed Uprooting the Leading Causes of Death, which explored the role diet may play in preventing, arresting, and even reversing our top 15 killers. Not only did it rise to become one of the Top 10 Most Popular Videos of 2012, it remains my single most viewed video to date, watched over a million times (NutritionFacts.org is now up to more than 1.5 million hits a month!).

In 2013 I developed the sequel, More Than an Apple a Day, in which I explored the role diet could play in treating some of our most common conditions. I presented it around the country and it ended up #1 on our Top 10 Most Popular Videos of 2013. Then in 2014 I premiered the sequel-sequel, From Table to Able, in which I explored the role diet could play in treating some of our most disabling diseases, landing #1 on our Top 10 Most Popular Videos of 2014.

Every year I wonder how I'm going to top the year before. Knowing how popular these live presentations can be and hearing all the stories from folks about what a powerful impact they can have on people's lives, I put my all into this new 2015 one. I spent more time putting together this presentation than any other in my life. It took me an entire month, and when you see it I think you'll appreciate why.

This year, I'm honored to bring you Food as Medicine, in which I go through our most dreaded diseases--but that's not even the best part! I'm really proud of what I put together for the ending. I spend the last 20 minutes or so (starting at 56:22) going through a thought experiment that I'm hoping everyone will find compelling. I think it may be my best presentation ever. You be the judge.

You can watch it at no cost online, but it is also available on DVD through my website or on Amazon. If you want to share copies with others, I have a five for $40 special (enter coupon code 5FOR40FAM). All proceeds from the sales of all my books, DVDs, downloads, and presentations go to the 501c3 nonprofit charity that keeps NutritionFacts.org free for all, for all time. If you want to support this initiative to educate millions about eradicating dietary diseases, please consider making a donation.

After you've watched the new presentation, make sure you're subscribed to get my video updates daily, weekly, or monthly to stay on top of all the latest.

-Michael Greger

Original Link