How Exactly Does Type 2 Diabetes Develop?

How Exactly Does Type 2 Diabetes Develop.jpeg

Insulin resistance is the cause of both prediabetes and type 2 diabetes. OkK, so what is the cause of insulin resistance? Insulin resistance is now accepted to be closely associated with the accumulation of fat within our muscle cells. This fat toxicity inside of our muscles is a major factor in the cause of insulin resistance and type 2 diabetes, as it interferes with the action of insulin. I've explored how fat makes our muscles insulin resistant (see What Causes Insulin Resistance?), how that fat can come from the fat we eat or the fat we wear (see The Spillover Effect Links Obesity to Diabetes), and how not all fats are the same (see Lipotoxicity: How Saturated Fat Raises Blood Sugar). It's the type of fat found predominantly in animal fats, relative to plant fats, that appears to be especially deleterious with respect to fat-induced insulin insensitivity. But this insulin resistance in our muscles starts years before diabetes is diagnosed.

In my video, Diabetes as a Disease of Fat Toxicity, you can see that insulin resistance starts over a decade before diabetes is actually diagnosed, as blood sugar levels slowly start creeping up. And then, all of the sudden, the pancreas conks out, and blood sugars skyrocket. What could underlie this relatively rapid failure of insulin secretion?

At first, the pancreas pumps out more and more insulin, trying to overcome the fat-induced insulin resistance in the muscles, and high insulin levels can lead to the accumulation of fat in the liver, called fatty liver disease. Before diagnosis of type 2 diabetes, there is a long silent scream from the liver. As fat builds up in our liver, it also becomes resistant to insulin.

Normally, the liver is constantly producing blood sugar to keep our brain alive between meals. As soon as we eat breakfast, though, the insulin released to deal with the meal normally turns off liver glucose production, which makes sense since we don't need it anymore. But when our liver is filled with fat, it becomes insulin resistant like our muscles, and doesn't respond to the breakfast signal; it keeps pumping out blood sugar all day long on top of whatever we eat. Then the pancreas pumps out even more insulin to deal with the high sugars, and our liver gets fatter and fatter. That's one of the twin vicious cycles of diabetes. Fatty muscles, in the context of too many calories, leads to a fatty liver, which leads to an even fattier liver. This is all still before we have diabetes.

Fatty liver can be deadly. The liver starts trying to offload the fat by dumping it back into the bloodstream in the form of something called VLDL, and that starts building up in the cells in the pancreas that produce the insulin in the first place. Now we know how diabetes develops: fatty muscles lead to a fatty liver, which leads to a fatty pancreas. It is now clear that type 2 diabetes is a condition of excess fat inside our organs, whether we're obese or not.

The only thing that was keeping us from diabetes-unchecked skyrocketing blood sugars-is that the pancreas was working overtime pumping out extra insulin to overcome insulin resistance. But as the so-called islet or Beta cells in the pancreas are killed off by the fatty buildup, insulin production starts to fail, and we're left with the worst of both worlds: insulin resistance combined with a failing pancreas. Unable to then overcome the resistance, blood sugar levels go up and up, and boom: type 2 diabetes.

This has implications for cancer as well. Obesity leads to insulin resistance and our blood sugars start to go up, so our pancreas starts pumping out more insulin to try to force more sugar into our muscles, and eventually the fat spills over into the pancreas, killing off the insulin-producing cells. Then we develop diabetes, in which case we may have to start injecting insulin at high levels to overcome the insulin-resistance, and these high insulin levels promote cancer. That's one of the reasons we think obese women get more breast cancer. It all traces back to fat getting into our muscle cells, causing insulin resistance: fat from our stomach (obesity) or fat going into our stomach (saturated fats in our diet).

Now it should make sense why the American Diabetes Association recommends reduced intake of dietary fat as a strategy for reducing the risk for developing diabetes.


The reason I'm going into all this detail is that I'm hoping to empower both those suffering from the disease and those treating sufferers so as to better understand dietary interventions to prevent and treat the epidemic.

Here are some videos on prevention:

And here are some on treatment:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nephron. This image has been modified.

Original Link

How Exactly Does Type 2 Diabetes Develop?

How Exactly Does Type 2 Diabetes Develop.jpeg

Insulin resistance is the cause of both prediabetes and type 2 diabetes. OkK, so what is the cause of insulin resistance? Insulin resistance is now accepted to be closely associated with the accumulation of fat within our muscle cells. This fat toxicity inside of our muscles is a major factor in the cause of insulin resistance and type 2 diabetes, as it interferes with the action of insulin. I've explored how fat makes our muscles insulin resistant (see What Causes Insulin Resistance?), how that fat can come from the fat we eat or the fat we wear (see The Spillover Effect Links Obesity to Diabetes), and how not all fats are the same (see Lipotoxicity: How Saturated Fat Raises Blood Sugar). It's the type of fat found predominantly in animal fats, relative to plant fats, that appears to be especially deleterious with respect to fat-induced insulin insensitivity. But this insulin resistance in our muscles starts years before diabetes is diagnosed.

In my video, Diabetes as a Disease of Fat Toxicity, you can see that insulin resistance starts over a decade before diabetes is actually diagnosed, as blood sugar levels slowly start creeping up. And then, all of the sudden, the pancreas conks out, and blood sugars skyrocket. What could underlie this relatively rapid failure of insulin secretion?

At first, the pancreas pumps out more and more insulin, trying to overcome the fat-induced insulin resistance in the muscles, and high insulin levels can lead to the accumulation of fat in the liver, called fatty liver disease. Before diagnosis of type 2 diabetes, there is a long silent scream from the liver. As fat builds up in our liver, it also becomes resistant to insulin.

Normally, the liver is constantly producing blood sugar to keep our brain alive between meals. As soon as we eat breakfast, though, the insulin released to deal with the meal normally turns off liver glucose production, which makes sense since we don't need it anymore. But when our liver is filled with fat, it becomes insulin resistant like our muscles, and doesn't respond to the breakfast signal; it keeps pumping out blood sugar all day long on top of whatever we eat. Then the pancreas pumps out even more insulin to deal with the high sugars, and our liver gets fatter and fatter. That's one of the twin vicious cycles of diabetes. Fatty muscles, in the context of too many calories, leads to a fatty liver, which leads to an even fattier liver. This is all still before we have diabetes.

Fatty liver can be deadly. The liver starts trying to offload the fat by dumping it back into the bloodstream in the form of something called VLDL, and that starts building up in the cells in the pancreas that produce the insulin in the first place. Now we know how diabetes develops: fatty muscles lead to a fatty liver, which leads to a fatty pancreas. It is now clear that type 2 diabetes is a condition of excess fat inside our organs, whether we're obese or not.

The only thing that was keeping us from diabetes-unchecked skyrocketing blood sugars-is that the pancreas was working overtime pumping out extra insulin to overcome insulin resistance. But as the so-called islet or Beta cells in the pancreas are killed off by the fatty buildup, insulin production starts to fail, and we're left with the worst of both worlds: insulin resistance combined with a failing pancreas. Unable to then overcome the resistance, blood sugar levels go up and up, and boom: type 2 diabetes.

This has implications for cancer as well. Obesity leads to insulin resistance and our blood sugars start to go up, so our pancreas starts pumping out more insulin to try to force more sugar into our muscles, and eventually the fat spills over into the pancreas, killing off the insulin-producing cells. Then we develop diabetes, in which case we may have to start injecting insulin at high levels to overcome the insulin-resistance, and these high insulin levels promote cancer. That's one of the reasons we think obese women get more breast cancer. It all traces back to fat getting into our muscle cells, causing insulin resistance: fat from our stomach (obesity) or fat going into our stomach (saturated fats in our diet).

Now it should make sense why the American Diabetes Association recommends reduced intake of dietary fat as a strategy for reducing the risk for developing diabetes.


The reason I'm going into all this detail is that I'm hoping to empower both those suffering from the disease and those treating sufferers so as to better understand dietary interventions to prevent and treat the epidemic.

Here are some videos on prevention:

And here are some on treatment:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nephron. This image has been modified.

Original Link

Can You Eat Too Much Fruit?

Can You Eat Too Much Fruit?.jpeg

In my video If Fructose is Bad, What About Fruit?, I explored how adding berries to our meals can actually blunt the detrimental effects of high glycemic foods, but how many berries? The purpose of one study out of Finland was to determine the minimum level of blueberry consumption at which a consumer may realistically expect to receive antioxidant benefits after eating blueberries with a sugary breakfast cereal. If we eat a bowl of corn flakes with no berries, within two hours, so many free radicals are created that it puts us into oxidative debt. The antioxidant power of our bloodstream drops below where we started from before breakfast, as the antioxidants in our bodies get used up dealing with such a crappy breakfast. As you can see in How Much Fruit is Too Much? video, a quarter cup of blueberries didn't seem to help much, but a half cup of blueberries did.

What about fruit for diabetics? Most guidelines recommend eating a diet with a high intake of fiber-rich food, including fruit, because they're so healthy--antioxidants, anti-inflammatory, improving artery function, and reducing cancer risk. However, some health professionals have concerns about the sugar content of fruit and therefore recommend restricting the fruit intake. So let's put it to the test! In a study from Denmark, diabetics were randomized into two groups: one told to eat at least two pieces of fruit a day, and the other told at most, two fruits a day. The reduce fruit group indeed reduce their fruit consumption, but it had no effect on the control of their diabetes or weight, and so, the researchers concluded, the intake of fruit should not be restricted in patients with type 2 diabetes. An emerging literature has shown that low-dose fructose may actually benefit blood sugar control. Having a piece of fruit with each meal would be expected to lower, not raise the blood sugar response.

The threshold for toxicity of fructose may be around 50 grams. The problem is that's the current average adult fructose consumption. So, the levels of half of all adults are likely above the threshold for fructose toxicity, and adolescents currently average 75. Is that limit for added sugars or for all fructose? If we don't want more than 50 and there's about ten in a piece of fruit, should we not eat more than five fruit a day? Quoting from the Harvard Health Letter, "the nutritional problems of fructose and sugar come when they are added to foods. Fruit, on the other hand, is beneficial in almost any amount." What do they mean almost? Can we eat ten fruit a day? How about twenty fruit a day?

It's actually been put to the test.

Seventeen people were made to eat 20 servings a day of fruit. Despite the extraordinarily high fructose content of this diet, presumably about 200 g/d--eight cans of soda worth, the investigators reported no adverse effects (and possible benefit actually) for body weight, blood pressure, and insulin and lipid levels after three to six months. More recently, Jenkins and colleagues put people on about a 20 servings of fruit a day diet for a few weeks and found no adverse effects on weight or blood pressure or triglycerides, and an astounding 38 point drop in LDL cholesterol.

There was one side effect, though. Given the 44 servings of vegetables they had on top of all that fruit, they recorded the largest bowl movements apparently ever documented in a dietary intervention.


Cutting down on sugary foods may be easier said than done (see Are Sugary Foods Addictive?) but it's worth it. For more on the dangers of high levels of fructose in added sugars, see How Much Added Sugar Is Too Much?.

What's that about being in oxidative debt? See my three part series on how to pull yourself out of the red:

Ironically, fat may be more of a problem when it comes to diabetes than sugar, see:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Can You Eat Too Much Fruit?

Can You Eat Too Much Fruit?.jpeg

In my video If Fructose is Bad, What About Fruit?, I explored how adding berries to our meals can actually blunt the detrimental effects of high glycemic foods, but how many berries? The purpose of one study out of Finland was to determine the minimum level of blueberry consumption at which a consumer may realistically expect to receive antioxidant benefits after eating blueberries with a sugary breakfast cereal. If we eat a bowl of corn flakes with no berries, within two hours, so many free radicals are created that it puts us into oxidative debt. The antioxidant power of our bloodstream drops below where we started from before breakfast, as the antioxidants in our bodies get used up dealing with such a crappy breakfast. As you can see in How Much Fruit is Too Much? video, a quarter cup of blueberries didn't seem to help much, but a half cup of blueberries did.

What about fruit for diabetics? Most guidelines recommend eating a diet with a high intake of fiber-rich food, including fruit, because they're so healthy--antioxidants, anti-inflammatory, improving artery function, and reducing cancer risk. However, some health professionals have concerns about the sugar content of fruit and therefore recommend restricting the fruit intake. So let's put it to the test! In a study from Denmark, diabetics were randomized into two groups: one told to eat at least two pieces of fruit a day, and the other told at most, two fruits a day. The reduce fruit group indeed reduce their fruit consumption, but it had no effect on the control of their diabetes or weight, and so, the researchers concluded, the intake of fruit should not be restricted in patients with type 2 diabetes. An emerging literature has shown that low-dose fructose may actually benefit blood sugar control. Having a piece of fruit with each meal would be expected to lower, not raise the blood sugar response.

The threshold for toxicity of fructose may be around 50 grams. The problem is that's the current average adult fructose consumption. So, the levels of half of all adults are likely above the threshold for fructose toxicity, and adolescents currently average 75. Is that limit for added sugars or for all fructose? If we don't want more than 50 and there's about ten in a piece of fruit, should we not eat more than five fruit a day? Quoting from the Harvard Health Letter, "the nutritional problems of fructose and sugar come when they are added to foods. Fruit, on the other hand, is beneficial in almost any amount." What do they mean almost? Can we eat ten fruit a day? How about twenty fruit a day?

It's actually been put to the test.

Seventeen people were made to eat 20 servings a day of fruit. Despite the extraordinarily high fructose content of this diet, presumably about 200 g/d--eight cans of soda worth, the investigators reported no adverse effects (and possible benefit actually) for body weight, blood pressure, and insulin and lipid levels after three to six months. More recently, Jenkins and colleagues put people on about a 20 servings of fruit a day diet for a few weeks and found no adverse effects on weight or blood pressure or triglycerides, and an astounding 38 point drop in LDL cholesterol.

There was one side effect, though. Given the 44 servings of vegetables they had on top of all that fruit, they recorded the largest bowl movements apparently ever documented in a dietary intervention.


Cutting down on sugary foods may be easier said than done (see Are Sugary Foods Addictive?) but it's worth it. For more on the dangers of high levels of fructose in added sugars, see How Much Added Sugar Is Too Much?.

What's that about being in oxidative debt? See my three part series on how to pull yourself out of the red:

Ironically, fat may be more of a problem when it comes to diabetes than sugar, see:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Improving Employee Diets Could Save Companies Millions

Plant-Based Workplace Intervention.jpg

The food, alcohol, and tobacco industries have been blamed for "manufacturing epidemics" of chronic disease, but they're just trying to sell more product like everyone else. And so if that means distorting science, creating front groups, compromising scientists, blocking public health policies... they're just trying to protect their business.

It's not about customer satisfaction, but shareholder satisfaction. How else could we have tobacco companies, for example, "continuing to produce products that kill one in two of their most loyal customers?"

Civil society organizations concerned with public health have earned a reputation for being "anti-industry," but the issue is not industry, but that sector of industry whose products are harmful to public health. We like the broccoli industry. In fact, the corporate world might end up leading the lifestyle medicine revolution.

As shown in my video, Plant-Based Workplace Intervention, the annual cost attributable to obesity alone among full-time employees is estimated at 70 billion dollars, primarily because obese employees are not as productive on the job. Having healthy employees is good for the bottom-line. Every dollar spent on wellness programs may offer a $3 return on investment. And if you track the market performance of companies that strive to nurture a culture of health, they appear to outperform their competition.

That's why companies like GEICO are exploring workplace dietary interventions (see my video, Slimming the Gecko). The remarkable success at GEICO headquarters led to an expansion of the program at corporate offices across the country, with test sites from San Diego to Macon, Georgia. Given that previous workplace studies have found that workers who ate a lot of animal protein had nearly five times the odds of obesity, whereas those that ate mostly plant protein appeared protected, obese and diabetic employees were asked to follow a plant-based diet of whole grains, vegetables, beans, and fruit while avoiding meat, dairy, and eggs. Compliance wasn't great. Fewer than half really got their animal product consumption down, but there were definitely improvements such as significant reductions in saturated fat, an increase in protective nutrients, and even noted weight loss, lower blood cholesterol levers, and better blood sugar control in diabetics.

And this was with no calorie counting, no portion control, and no exercise component. The weight reduction appears to result from feeling fuller earlier, due to higher dietary fiber intake. The difference in weight loss could also be the result of an increase in the thermic effect of food, allowing a small extra edge for weight loss in the vegan group. Those eating plant-based diets tend to burn off more calories in heat.

Eating plants appears to boost metabolism. This may be due to increased insulin sensitivity in cells, allowing cells to metabolize carbohydrates more quickly rather than storing them as body fat. "As a result, vegan diets have been shown to increase postprandial calorie burn by about 16%, up to three hours after consuming a meal."

Imagine how much money companies that self-insure their employees could save! See, for example:

Find out more on some of the potential downsides of corporate influence in videos like

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Ryan McGuire / Pixabay. This image has been modified.

Original Link

Improving Employee Diets Could Save Companies Millions

Plant-Based Workplace Intervention.jpg

The food, alcohol, and tobacco industries have been blamed for "manufacturing epidemics" of chronic disease, but they're just trying to sell more product like everyone else. And so if that means distorting science, creating front groups, compromising scientists, blocking public health policies... they're just trying to protect their business.

It's not about customer satisfaction, but shareholder satisfaction. How else could we have tobacco companies, for example, "continuing to produce products that kill one in two of their most loyal customers?"

Civil society organizations concerned with public health have earned a reputation for being "anti-industry," but the issue is not industry, but that sector of industry whose products are harmful to public health. We like the broccoli industry. In fact, the corporate world might end up leading the lifestyle medicine revolution.

As shown in my video, Plant-Based Workplace Intervention, the annual cost attributable to obesity alone among full-time employees is estimated at 70 billion dollars, primarily because obese employees are not as productive on the job. Having healthy employees is good for the bottom-line. Every dollar spent on wellness programs may offer a $3 return on investment. And if you track the market performance of companies that strive to nurture a culture of health, they appear to outperform their competition.

That's why companies like GEICO are exploring workplace dietary interventions (see my video, Slimming the Gecko). The remarkable success at GEICO headquarters led to an expansion of the program at corporate offices across the country, with test sites from San Diego to Macon, Georgia. Given that previous workplace studies have found that workers who ate a lot of animal protein had nearly five times the odds of obesity, whereas those that ate mostly plant protein appeared protected, obese and diabetic employees were asked to follow a plant-based diet of whole grains, vegetables, beans, and fruit while avoiding meat, dairy, and eggs. Compliance wasn't great. Fewer than half really got their animal product consumption down, but there were definitely improvements such as significant reductions in saturated fat, an increase in protective nutrients, and even noted weight loss, lower blood cholesterol levers, and better blood sugar control in diabetics.

And this was with no calorie counting, no portion control, and no exercise component. The weight reduction appears to result from feeling fuller earlier, due to higher dietary fiber intake. The difference in weight loss could also be the result of an increase in the thermic effect of food, allowing a small extra edge for weight loss in the vegan group. Those eating plant-based diets tend to burn off more calories in heat.

Eating plants appears to boost metabolism. This may be due to increased insulin sensitivity in cells, allowing cells to metabolize carbohydrates more quickly rather than storing them as body fat. "As a result, vegan diets have been shown to increase postprandial calorie burn by about 16%, up to three hours after consuming a meal."

Imagine how much money companies that self-insure their employees could save! See, for example:

Find out more on some of the potential downsides of corporate influence in videos like

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Ryan McGuire / Pixabay. This image has been modified.

Original Link

Lipotoxicity: How Saturated Fat Raises Blood Sugar

NF-Nov24 Lipotoxicity How Saturated Fat Raises Blood Sugar copy.jpg

The reason those eating plant-based diets have less fat buildup in their muscle cells and less insulin resistance may be because saturated fats appear to impair blood sugar control the most.

The association between fat and insulin resistance is now widely accepted. Insulin resistance is due to so-called ectopic fat accumulation, the buildup of fat in places it's not supposed to be, like within our muscle cells. But not all fats affect the muscles the same. The type of fat, saturated vs. unsaturated, is critical. Saturated fats like palmitate, found mostly in meat, dairy and eggs, cause insulin resistance, but oleate, found mostly in nuts, olives and avocados may actually improve insulin sensitivity.

What makes saturated fat bad? Saturated fat causes more toxic breakdown products and mitochondrial dysfunction, and increases oxidative stress, free radicals and inflammation, establishing a vicious cycle of events in which saturated fat induces free radicals, causes dysfunction in the little power plants within our muscle cells (mitochondria), which then causes an increase in free radical production and an impairment of insulin signaling. I explain this in my video Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Fat cells filled with saturated fat activate an inflammatory response to a far greater extent. This increased inflammation from saturated fat has been demonstrated to raise insulin resistance through free radical production. Saturated fat also has been shown to have a direct effect on skeletal muscle insulin resistance. Accumulation of saturated fat increases the amount of diacyl-glycerol in the muscles, which has been demonstrated to have a potent effect on muscle insulin resistance. You can take muscle biopsies from people and correlate the saturated fat buildup in their muscles with insulin resistance.

While monounsaturated fats are more likely to be detoxified or safely stored away, saturated fats create those toxic breakdown products like ceramide that causes lipotoxicity. Lipo- meaning fat, as in liposuction. This fat toxicity in our muscles is a well-known concept in the explanation of trigger for insulin resistance.

I've talked about the role saturated and trans fats contribute to the progression of other diseases, like autoimmune diseases, cancer and heart disease, but they can also cause insulin resistance, the underlying cause of prediabetes and type 2 diabetes. In the human diet, saturated fats are derived from animal sources while trans fats originate in meat and milk in addition to partially hydrogenated and refined vegetable oils.

That's why experimentally shifting people from animal fats to plant fats can improve insulin sensitivity. In a study done by Swedish researchers, insulin sensitivity was impaired on the diet with added butterfat, but not on the diet with added olive fat.

We know prolonged exposure of our muscles to high levels of fat leads to severe insulin resistance, with saturated fats demonstrated to be the worst, but they don't just lead to inhibition of insulin signaling, the activation of inflammatory pathways and the increase in free radicals, they also cause an alteration in gene expression. This can lead to a suppression of key mitochondrial enzymes like carnitine palmitoyltransferase, which finally solves the mystery of why those eating vegetarian have a 60 percent higher expression of that fat burning enzyme. They're eating less saturated fat.

So do those eating plant-based diets have less fat clogging their muscles and less insulin resistance too? There hasn't been any data available regarding the insulin sensitivity or inside muscle cell fat of those eating vegan or vegetarian... until now. Researchers at the Imperial College of London compared the insulin resistance and muscle fat of vegans versus omnivores. Those eating plant-based diets have the unfair advantage of being much slimmer, so they found omnivores who were as skinny as vegans to see if plant-based diets had a direct benefit, as opposed to indirectly pulling fat out of the muscles by helping people lose weight in general.

They found significantly less fat trapped in the muscle cells of vegans compared to omnivores at the same body weight, better insulin sensitivity, better blood sugar levels, better insulin levels and, excitingly, significantly improved beta-cell function (the cells in the pancreas that make the insulin). They conclude that eating plant-based is not only expected to be cardioprotective, helping prevent our #1 killer, heart disease, but that plant-based diets are beta-cell protective as well, helping also to prevent our seventh leading cause of death, diabetes.

This is the third of a three-part series, starting with What Causes Insulin Resistance? and The Spillover Effect Links Obesity to Diabetes.

Even if saturated fat weren't associated with heart disease, its effects on pancreatic function and insulin resistance in the muscles would be enough to warrant avoiding it. Despite popular press accounts, saturated fat intake remains the primary modifiable determinant of LDL cholesterol, the #1 risk factor for our #1 killer-heart disease. See The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

How low should we shoot for in terms of saturated fat intake? As low as possible, according to the U.S. National Academies of Science Institute of Medicine: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Andrew Malone / Flickr

Original Link

Lipotoxicity: How Saturated Fat Raises Blood Sugar

NF-Nov24 Lipotoxicity How Saturated Fat Raises Blood Sugar copy.jpg

The reason those eating plant-based diets have less fat buildup in their muscle cells and less insulin resistance may be because saturated fats appear to impair blood sugar control the most.

The association between fat and insulin resistance is now widely accepted. Insulin resistance is due to so-called ectopic fat accumulation, the buildup of fat in places it's not supposed to be, like within our muscle cells. But not all fats affect the muscles the same. The type of fat, saturated vs. unsaturated, is critical. Saturated fats like palmitate, found mostly in meat, dairy and eggs, cause insulin resistance, but oleate, found mostly in nuts, olives and avocados may actually improve insulin sensitivity.

What makes saturated fat bad? Saturated fat causes more toxic breakdown products and mitochondrial dysfunction, and increases oxidative stress, free radicals and inflammation, establishing a vicious cycle of events in which saturated fat induces free radicals, causes dysfunction in the little power plants within our muscle cells (mitochondria), which then causes an increase in free radical production and an impairment of insulin signaling. I explain this in my video Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Fat cells filled with saturated fat activate an inflammatory response to a far greater extent. This increased inflammation from saturated fat has been demonstrated to raise insulin resistance through free radical production. Saturated fat also has been shown to have a direct effect on skeletal muscle insulin resistance. Accumulation of saturated fat increases the amount of diacyl-glycerol in the muscles, which has been demonstrated to have a potent effect on muscle insulin resistance. You can take muscle biopsies from people and correlate the saturated fat buildup in their muscles with insulin resistance.

While monounsaturated fats are more likely to be detoxified or safely stored away, saturated fats create those toxic breakdown products like ceramide that causes lipotoxicity. Lipo- meaning fat, as in liposuction. This fat toxicity in our muscles is a well-known concept in the explanation of trigger for insulin resistance.

I've talked about the role saturated and trans fats contribute to the progression of other diseases, like autoimmune diseases, cancer and heart disease, but they can also cause insulin resistance, the underlying cause of prediabetes and type 2 diabetes. In the human diet, saturated fats are derived from animal sources while trans fats originate in meat and milk in addition to partially hydrogenated and refined vegetable oils.

That's why experimentally shifting people from animal fats to plant fats can improve insulin sensitivity. In a study done by Swedish researchers, insulin sensitivity was impaired on the diet with added butterfat, but not on the diet with added olive fat.

We know prolonged exposure of our muscles to high levels of fat leads to severe insulin resistance, with saturated fats demonstrated to be the worst, but they don't just lead to inhibition of insulin signaling, the activation of inflammatory pathways and the increase in free radicals, they also cause an alteration in gene expression. This can lead to a suppression of key mitochondrial enzymes like carnitine palmitoyltransferase, which finally solves the mystery of why those eating vegetarian have a 60 percent higher expression of that fat burning enzyme. They're eating less saturated fat.

So do those eating plant-based diets have less fat clogging their muscles and less insulin resistance too? There hasn't been any data available regarding the insulin sensitivity or inside muscle cell fat of those eating vegan or vegetarian... until now. Researchers at the Imperial College of London compared the insulin resistance and muscle fat of vegans versus omnivores. Those eating plant-based diets have the unfair advantage of being much slimmer, so they found omnivores who were as skinny as vegans to see if plant-based diets had a direct benefit, as opposed to indirectly pulling fat out of the muscles by helping people lose weight in general.

They found significantly less fat trapped in the muscle cells of vegans compared to omnivores at the same body weight, better insulin sensitivity, better blood sugar levels, better insulin levels and, excitingly, significantly improved beta-cell function (the cells in the pancreas that make the insulin). They conclude that eating plant-based is not only expected to be cardioprotective, helping prevent our #1 killer, heart disease, but that plant-based diets are beta-cell protective as well, helping also to prevent our seventh leading cause of death, diabetes.

This is the third of a three-part series, starting with What Causes Insulin Resistance? and The Spillover Effect Links Obesity to Diabetes.

Even if saturated fat weren't associated with heart disease, its effects on pancreatic function and insulin resistance in the muscles would be enough to warrant avoiding it. Despite popular press accounts, saturated fat intake remains the primary modifiable determinant of LDL cholesterol, the #1 risk factor for our #1 killer-heart disease. See The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

How low should we shoot for in terms of saturated fat intake? As low as possible, according to the U.S. National Academies of Science Institute of Medicine: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Andrew Malone / Flickr

Original Link