Foods to Avoid to Help Prevent Diabetes

Oct 24 Foods to Avoid copy.jpeg

We've known that being overweight and obese are important risk factors for type 2 diabetes, but, until recently, not much attention has been paid to the role of specific foods. I discuss this issue in my video, Why Is Meat a Risk Factor for Diabetes?

A 2013 meta-analysis of all the cohorts looking at the connection between meat and diabetes found a significantly higher risk associated with total meat consumption--especially consumption of processed meat, particularly poultry. But why? There's a whole list of potential culprits in meat: saturated fat, animal fat, trans fats naturally found in meat, cholesterol, or animal protein. It could be the heme iron found in meat, which can lead to free radicals and iron-induced oxidative stress that may lead to chronic inflammation and type 2 diabetes, or advanced glycation end (AGE) products, which promote oxidative stress and inflammation. Food analyses show that the highest levels of these so-called glycotoxins are found in meat--particularly roasted, fried, or broiled meat, though any foods from animal sources (and even high fat and protein plant foods such as nuts) exposed to high dry temperatures can be potent sources of these pro-oxidant chemicals.

In another study, researchers fed diabetics glycotoxin-packed foods, like chicken, fish, and eggs, and their inflammatory markers--tumor necrosis factor, C-reactive protein, and vascular adhesion molecules--shot up. "Thus, in diabetes, environmental (dietary) AGEs promote inflammatory mediators, leading to tissue injury." The good news is that restriction of these kinds of foods may suppress these inflammatory effects. Appropriate measures to limit AGE intake, such as eliminating meat or using only steaming and boiling as methods for cooking it, "may greatly reduce the already heavy burden of these toxins in the diabetic patient." These glycotoxins may be the missing link between the increased consumption of animal fat and meats and the development of type 2 diabetes.

Since the 2013 meta-analysis was published, another study came out in which approximately 17,000 people were followed for about a dozen years. Researchers found an 8% increased risk for every 50 grams of daily meat consumption. Just one quarter of a chicken breast's worth of meat for the entire day may significantly increase the risk of diabetes. Yes, we know there are many possible culprits: the glycotoxins or trans fat in meat, saturated fat, or the heme iron (which could actually promote the formation of carcinogens called nitrosamines, though they could also just be produced in the cooking process itself). However, we did learn something new: There also appears to be a greater incidence of diabetes among those who handle meat for a living. Maybe there are some diabetes-causing zoonotic infectious agents--such as viruses--present in fresh cuts of meat, including poultry.

A "crucial factor underlying the diabetes epidemic" may be the overstimulation of the aging enzyme TOR pathway by excess food consumption--but not by the consumption of just any food: Animal proteins not only stimulate the cancer-promoting hormone insulin growth factor-1 but also provide high amounts of leucine, which stimulates TOR activation and appears to contribute to the burning out of the insulin-producing beta cells in the pancreas, contributing to type 2 diabetes. So, it's not just the high fat and added sugars that are implicated; critical attention must be paid to the daily intake of animal proteins as well.

According to a study, "[i]n general, lower leucine levels are only reached by restriction of animal proteins." To reach the leucine intake provided by dairy or meat, we'd have to eat 9 pounds of cabbage or 100 apples to take an extreme example. That just exemplifies the extreme differences in leucine amounts provided by a more standard diet in comparison with a more plant-based diet.

I reviewed the role endocrine-disrupting industrial pollutants in the food supply may play in a three-part video series: Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat. Clearly, the standard America diet and lifestyle contribute to the epidemic of diabetes and obesity, but the contribution of these industrial pollutants can no longer be ignored. We now have experimental evidence that exposure to industrial toxins alone induces weight gain and insulin resistance, and, therefore, may be an underappreciated cause of obesity and diabetes. Consider what's happening to our infants: Obesity in a six-month-old is obviously not related to diet or lack of exercise. They're now exposed to hundreds of chemicals from their moms, straight through the umbilical cord, some of which may be obesogenic (that is, obesity-generating).

The millions of pounds of chemicals and heavy metals released every year into our environment should make us all stop and think about how we live and the choices we make every day in the foods we eat. A 2014 review of the evidence on pollutants and diabetes noted that we can be exposed through toxic spills, but "most of the human exposure nowadays is from the ingestion of contaminated food as a result of bioaccumulation up the food chain. The main source (around 95%) of [persistent pollutant] intake is through dietary intake of animal fats."


For more on the information mentioned here, see the following videos that take a closer look at these major topics:

AGEs: Glycotoxins, Avoiding a Sugary Grave, and Reducing Glycotoxin Intake to Prevent Alzheimer's.

TOR: Why Do We Age?, Caloric Restriction vs. Animal Protein Restriction, Prevent Cancer From Going on TOR, and Saving Lives By Treating Acne With Diet

Viruses: Infectobesity: Adenovirus 36 and Childhood Obesity

Poultry workers: Poultry Exposure and Neurological Disease, Poultry Exposure Tied to Liver and Pancreatic Cancer, and Eating Outside Our Kingdom

Industrial pollutants: Obesity-Causing Pollutants in Food, Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat

The link between meat and diabetes may also be due to a lack of sufficient protective components of plants in the diet, which is discussed in my videos How May Plants Protect Against Diabetes?, Plant-Based Diets for Diabetes, Plant-Based Diets and Diabetes, and How Not to Die from Diabetes.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Foods to Avoid to Help Prevent Diabetes

Oct 24 Foods to Avoid copy.jpeg

We've known that being overweight and obese are important risk factors for type 2 diabetes, but, until recently, not much attention has been paid to the role of specific foods. I discuss this issue in my video, Why Is Meat a Risk Factor for Diabetes?

A 2013 meta-analysis of all the cohorts looking at the connection between meat and diabetes found a significantly higher risk associated with total meat consumption--especially consumption of processed meat, particularly poultry. But why? There's a whole list of potential culprits in meat: saturated fat, animal fat, trans fats naturally found in meat, cholesterol, or animal protein. It could be the heme iron found in meat, which can lead to free radicals and iron-induced oxidative stress that may lead to chronic inflammation and type 2 diabetes, or advanced glycation end (AGE) products, which promote oxidative stress and inflammation. Food analyses show that the highest levels of these so-called glycotoxins are found in meat--particularly roasted, fried, or broiled meat, though any foods from animal sources (and even high fat and protein plant foods such as nuts) exposed to high dry temperatures can be potent sources of these pro-oxidant chemicals.

In another study, researchers fed diabetics glycotoxin-packed foods, like chicken, fish, and eggs, and their inflammatory markers--tumor necrosis factor, C-reactive protein, and vascular adhesion molecules--shot up. "Thus, in diabetes, environmental (dietary) AGEs promote inflammatory mediators, leading to tissue injury." The good news is that restriction of these kinds of foods may suppress these inflammatory effects. Appropriate measures to limit AGE intake, such as eliminating meat or using only steaming and boiling as methods for cooking it, "may greatly reduce the already heavy burden of these toxins in the diabetic patient." These glycotoxins may be the missing link between the increased consumption of animal fat and meats and the development of type 2 diabetes.

Since the 2013 meta-analysis was published, another study came out in which approximately 17,000 people were followed for about a dozen years. Researchers found an 8% increased risk for every 50 grams of daily meat consumption. Just one quarter of a chicken breast's worth of meat for the entire day may significantly increase the risk of diabetes. Yes, we know there are many possible culprits: the glycotoxins or trans fat in meat, saturated fat, or the heme iron (which could actually promote the formation of carcinogens called nitrosamines, though they could also just be produced in the cooking process itself). However, we did learn something new: There also appears to be a greater incidence of diabetes among those who handle meat for a living. Maybe there are some diabetes-causing zoonotic infectious agents--such as viruses--present in fresh cuts of meat, including poultry.

A "crucial factor underlying the diabetes epidemic" may be the overstimulation of the aging enzyme TOR pathway by excess food consumption--but not by the consumption of just any food: Animal proteins not only stimulate the cancer-promoting hormone insulin growth factor-1 but also provide high amounts of leucine, which stimulates TOR activation and appears to contribute to the burning out of the insulin-producing beta cells in the pancreas, contributing to type 2 diabetes. So, it's not just the high fat and added sugars that are implicated; critical attention must be paid to the daily intake of animal proteins as well.

According to a study, "[i]n general, lower leucine levels are only reached by restriction of animal proteins." To reach the leucine intake provided by dairy or meat, we'd have to eat 9 pounds of cabbage or 100 apples to take an extreme example. That just exemplifies the extreme differences in leucine amounts provided by a more standard diet in comparison with a more plant-based diet.

I reviewed the role endocrine-disrupting industrial pollutants in the food supply may play in a three-part video series: Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat. Clearly, the standard America diet and lifestyle contribute to the epidemic of diabetes and obesity, but the contribution of these industrial pollutants can no longer be ignored. We now have experimental evidence that exposure to industrial toxins alone induces weight gain and insulin resistance, and, therefore, may be an underappreciated cause of obesity and diabetes. Consider what's happening to our infants: Obesity in a six-month-old is obviously not related to diet or lack of exercise. They're now exposed to hundreds of chemicals from their moms, straight through the umbilical cord, some of which may be obesogenic (that is, obesity-generating).

The millions of pounds of chemicals and heavy metals released every year into our environment should make us all stop and think about how we live and the choices we make every day in the foods we eat. A 2014 review of the evidence on pollutants and diabetes noted that we can be exposed through toxic spills, but "most of the human exposure nowadays is from the ingestion of contaminated food as a result of bioaccumulation up the food chain. The main source (around 95%) of [persistent pollutant] intake is through dietary intake of animal fats."


For more on the information mentioned here, see the following videos that take a closer look at these major topics:

AGEs: Glycotoxins, Avoiding a Sugary Grave, and Reducing Glycotoxin Intake to Prevent Alzheimer's.

TOR: Why Do We Age?, Caloric Restriction vs. Animal Protein Restriction, Prevent Cancer From Going on TOR, and Saving Lives By Treating Acne With Diet

Viruses: Infectobesity: Adenovirus 36 and Childhood Obesity

Poultry workers: Poultry Exposure and Neurological Disease, Poultry Exposure Tied to Liver and Pancreatic Cancer, and Eating Outside Our Kingdom

Industrial pollutants: Obesity-Causing Pollutants in Food, Fish and Diabetes, Diabetes and Dioxins, and Pollutants in Salmon and Our Own Fat

The link between meat and diabetes may also be due to a lack of sufficient protective components of plants in the diet, which is discussed in my videos How May Plants Protect Against Diabetes?, Plant-Based Diets for Diabetes, Plant-Based Diets and Diabetes, and How Not to Die from Diabetes.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Plant versus Animal Iron

Plant versus Animal Iron.jpeg

It is commonly thought that those who eat plant-based diets may be more prone to iron deficiency, but it turns out that they're no more likely to suffer from iron deficiency anemia than anybody else. This may be because not only do those eating meat-free diets tend to get more fiber, magnesium, and vitamins like A, C, and E, but they also get more iron.

The iron found predominantly in plants is non-heme iron, which isn't absorbed as well as the heme iron found in blood and muscle, but this may be a good thing. As seen in my video, The Safety of Heme vs. Non-Heme Iron, avoidance of heme iron may be one of the key elements of plant-based protection against metabolic syndrome, and may also be beneficial in lowering the risk from other chronic diseases such as heart disease.

The data linking coronary heart disease and the intake of iron, in general, has been mixed. This inconsistency of evidence may be because of where the iron comes from. The majority of total dietary iron is non-heme iron, coming mostly from plants. So, total iron intake is associated with lower heart disease risk, but iron intake from meat is associated with significantly higher risk for heart disease. This is thought to be because iron can act as a pro-oxidant, contributing to the development of atherosclerosis by oxidizing cholesterol with free radicals. The risk has been quantified as a 27% increase in coronary heart disease risk for every 1 milligram of heme iron consumed daily.

The same has been found for stroke risk. The studies on iron intake and stroke have had conflicting results, but that may be because they had never separated out heme iron from non-heme iron... until now. Researchers found that the intake of meat (heme) iron, but not plant (non-heme) iron, was associated with an increased risk of stroke.

The researchers also found that higher intake of heme iron--but not total or plant (non-heme) iron--was significantly associated with greater risk for type 2 diabetes. There may be a 16% increase in risk for type 2 diabetes for every 1 milligram of heme iron consumed daily.

The same has also been found for cancer, with up to 12% increased risk for every milligram of daily heme iron exposure. In fact, we can actually tell how much meat someone is eating by looking at their tumors. To characterize the mechanisms underlying meat-related lung cancer development, researchers asked lung cancer patients how much meat they ate and examined the gene expression patterns in their tumors. They identified a signature pattern of heme-related gene expression. Although they looked specifically at lung cancer, they expect these meat-related gene expression changes may occur in other cancers as well.

We do need to get enough iron, but only about 3% of premenopausal white women have iron deficiency anemia these days. However, the rates are worse in African and Mexican Americans. Taking into account our leading killers--heart disease, cancer, and diabetes--the healthiest source of iron appears to be non-heme iron, found naturally in abundance in whole grains, beans, split peas, chickpeas, lentils, dark green leafy vegetables, dried fruits, nuts, and seeds.

But how much money can be made on beans, though? The processed food industry came up with a blood-based crisp bread, made out of rye flour and blood from cattle and pigs, which is one of the most concentrated sources of heme iron, about two-thirds more than blood from chickens. If blood-based crackers don't sound particularly appetizing, you can always snack on cow blood cookies. And there are always blood-filled biscuits, whose filling has been described as "a dark-colored, chocolate flavored paste with a very pleasant taste." (It's dark-colored because spray-dried pig blood can have a darkening effect on the food product's color.) The worry is not the color or taste, it's the heme iron, which, because of its potential cancer risk, is not considered safe to add to foods intended for the general population.

Previously, I've touched on the double-edged iron sword in Risk Associated With Iron Supplements and Phytates for the Prevention of Cancer. It may also help answer Why Was Heart Disease Rare in the Mediterranean?

Those eating plant-based diets get more of most nutrients since whole plant foods are so nutrient dense. See Nutrient-Dense Approach to Weight Management.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank

Original Link

Plant versus Animal Iron

Plant versus Animal Iron.jpeg

It is commonly thought that those who eat plant-based diets may be more prone to iron deficiency, but it turns out that they're no more likely to suffer from iron deficiency anemia than anybody else. This may be because not only do those eating meat-free diets tend to get more fiber, magnesium, and vitamins like A, C, and E, but they also get more iron.

The iron found predominantly in plants is non-heme iron, which isn't absorbed as well as the heme iron found in blood and muscle, but this may be a good thing. As seen in my video, The Safety of Heme vs. Non-Heme Iron, avoidance of heme iron may be one of the key elements of plant-based protection against metabolic syndrome, and may also be beneficial in lowering the risk from other chronic diseases such as heart disease.

The data linking coronary heart disease and the intake of iron, in general, has been mixed. This inconsistency of evidence may be because of where the iron comes from. The majority of total dietary iron is non-heme iron, coming mostly from plants. So, total iron intake is associated with lower heart disease risk, but iron intake from meat is associated with significantly higher risk for heart disease. This is thought to be because iron can act as a pro-oxidant, contributing to the development of atherosclerosis by oxidizing cholesterol with free radicals. The risk has been quantified as a 27% increase in coronary heart disease risk for every 1 milligram of heme iron consumed daily.

The same has been found for stroke risk. The studies on iron intake and stroke have had conflicting results, but that may be because they had never separated out heme iron from non-heme iron... until now. Researchers found that the intake of meat (heme) iron, but not plant (non-heme) iron, was associated with an increased risk of stroke.

The researchers also found that higher intake of heme iron--but not total or plant (non-heme) iron--was significantly associated with greater risk for type 2 diabetes. There may be a 16% increase in risk for type 2 diabetes for every 1 milligram of heme iron consumed daily.

The same has also been found for cancer, with up to 12% increased risk for every milligram of daily heme iron exposure. In fact, we can actually tell how much meat someone is eating by looking at their tumors. To characterize the mechanisms underlying meat-related lung cancer development, researchers asked lung cancer patients how much meat they ate and examined the gene expression patterns in their tumors. They identified a signature pattern of heme-related gene expression. Although they looked specifically at lung cancer, they expect these meat-related gene expression changes may occur in other cancers as well.

We do need to get enough iron, but only about 3% of premenopausal white women have iron deficiency anemia these days. However, the rates are worse in African and Mexican Americans. Taking into account our leading killers--heart disease, cancer, and diabetes--the healthiest source of iron appears to be non-heme iron, found naturally in abundance in whole grains, beans, split peas, chickpeas, lentils, dark green leafy vegetables, dried fruits, nuts, and seeds.

But how much money can be made on beans, though? The processed food industry came up with a blood-based crisp bread, made out of rye flour and blood from cattle and pigs, which is one of the most concentrated sources of heme iron, about two-thirds more than blood from chickens. If blood-based crackers don't sound particularly appetizing, you can always snack on cow blood cookies. And there are always blood-filled biscuits, whose filling has been described as "a dark-colored, chocolate flavored paste with a very pleasant taste." (It's dark-colored because spray-dried pig blood can have a darkening effect on the food product's color.) The worry is not the color or taste, it's the heme iron, which, because of its potential cancer risk, is not considered safe to add to foods intended for the general population.

Previously, I've touched on the double-edged iron sword in Risk Associated With Iron Supplements and Phytates for the Prevention of Cancer. It may also help answer Why Was Heart Disease Rare in the Mediterranean?

Those eating plant-based diets get more of most nutrients since whole plant foods are so nutrient dense. See Nutrient-Dense Approach to Weight Management.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank

Original Link

Dr. Greger’s 2015 Live Year-in-Review Presentation

Food as Medicine

View my new live presentation here: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet

Every year I scour the world's scholarly literature on clinical nutrition, pulling together what I find to be the most interesting, practical, and groundbreaking science on how to best feed ourselves and our families. I start with the thousands of papers published annually on nutrition (27,000 this year--a new record!) and, thanks to a crack team of volunteers (and now staff!), I'm able to whittle those down (to a mere 8,000 this year). They are then downloaded, categorized, read, analyzed, and churned into the few hundred short videos. This allows me to post new videos and articles every day, year-round, to NutritionFacts.org. This certainly makes the site unique. There's no other science-based source for free daily updates on the latest discoveries in nutrition. The problem is that the amount of information can be overwhelming.

Currently I have more than a thousand videos covering 1,931 nutrition topics. Where do you even begin? Many have expressed their appreciation for the breadth of material, but asked that I try to distill it into a coherent summary of how best to use diet to prevent and treat chronic disease. I took this feedback to heart and in 2012 developed Uprooting the Leading Causes of Death, which explored the role diet may play in preventing, arresting, and even reversing our top 15 killers. Not only did it rise to become one of the Top 10 Most Popular Videos of 2012, it remains my single most viewed video to date, watched over a million times (NutritionFacts.org is now up to more than 1.5 million hits a month!).

In 2013 I developed the sequel, More Than an Apple a Day, in which I explored the role diet could play in treating some of our most common conditions. I presented it around the country and it ended up #1 on our Top 10 Most Popular Videos of 2013. Then in 2014 I premiered the sequel-sequel, From Table to Able, in which I explored the role diet could play in treating some of our most disabling diseases, landing #1 on our Top 10 Most Popular Videos of 2014.

Every year I wonder how I'm going to top the year before. Knowing how popular these live presentations can be and hearing all the stories from folks about what a powerful impact they can have on people's lives, I put my all into this new 2015 one. I spent more time putting together this presentation than any other in my life. It took me an entire month, and when you see it I think you'll appreciate why.

This year, I'm honored to bring you Food as Medicine, in which I go through our most dreaded diseases--but that's not even the best part! I'm really proud of what I put together for the ending. I spend the last 20 minutes or so (starting at 56:22) going through a thought experiment that I'm hoping everyone will find compelling. I think it may be my best presentation ever. You be the judge.

You can watch it at no cost online, but it is also available on DVD through my website or on Amazon. If you want to share copies with others, I have a five for $40 special (enter coupon code 5FOR40FAM). All proceeds from the sales of all my books, DVDs, downloads, and presentations go to the 501c3 nonprofit charity that keeps NutritionFacts.org free for all, for all time. If you want to support this initiative to educate millions about eradicating dietary diseases, please consider making a donation.

After you've watched the new presentation, make sure you're subscribed to get my video updates daily, weekly, or monthly to stay on top of all the latest.

-Michael Greger

Original Link