What Are the Benefits of Organic?

What Are the Benefits of Organic?.jpeg

The medical literature has been historically hostile to organic foods, blaming in part erroneous information supplied by the health food movement for our ignorance of nutrition. But until just a few generations ago, all food was organic. It's kind of ironic that what we now call conventional food really isn't very conventional for our species.

By eating organic we can reduce our exposure to pesticides, but it remains unclear whether such a reduction in exposure is clinically relevant. In my video, Are Organic Foods Safer?, I talked about some of the test tube studies comparing health-related properties of organic versus conventional foods. Organic produce was found to have higher antioxidant and antimutagenic activity combined with better inhibition of cancer cell proliferation, but in terms of studies on actual people rather than petri dishes, there isn't much science either way.

Why can't you just compare the health of those who buy organic to those who don't? Organic consumers do report being significantly healthier than conventional consumers, but they also tend to eat more plant foods in general and less soda and alcohol, processed meat, or milk, and just eat healthier in general. No wonder they feel so much better!

Therefore, there is an urgent need for interventional trials, or studies following cohorts of people eating organic over time like the Million Women Study in the UK, which was the first to examine the association between the consumption of organic food and subsequent risk of cancer. The only significant risk reduction they found, though, was for non-Hodgkin's lymphoma. This is consistent with data showing a higher risk of developing lymphoma in those who have higher levels of pesticides stored in their butt fat, a study undertaken because farmworkers have been found to have higher rates of lymphoma.

Parental farmworker exposure is also associated with a birth defect of the penis called hypospadias, and so researchers decided to see if moms who failed to choose organic were at increased risk. Indeed they found that frequent consumption of conventional high-fat dairy products was associated with about double the odds of the birth defect. This could just be because those that choose organic have other related healthy behaviors, or it could be that high-fat foods like dairy products bioamplify the fat-soluble toxins in our environment.

In my video, Are Organic Foods Healthier?, you can see two other general population pesticide studies that have raised concerns. One study found about a 50 to 70% increase in the odds of ADHD among children with pesticide levels in their urine, and another that found triple the odds of testicular cancer among men with higher levels of organochlorine pesticides in their blood. 90% of such pollutants come from fish, meat, and dairy, which may help explain rising testicular cancer rates in many western countries since World War II.

What about interventional trials? All we have in the medical literature so far are studies showing organically grown food provides health benefits to fruit flies raised on diets of conventional versus organic produce when subjected to a variety of tests designed to assess overall fly health. And what do you know--flies raised on diets made from organically grown produce lived longer. Hmm, insects eating insecticides don't do as well. Not exactly much of a breakthrough!


For how to best get pesticides off of conventional produce, see my video How to Make Your Own Fruit and Vegetable Wash.

Pesticides are one thing, but Are Organic Foods More Nutritious?

Overall, Are the Benefits of Organic Food Underrated or Overrated?

For more on the impact of food contaminants during pregnancy, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Are the Benefits of Organic?

What Are the Benefits of Organic?.jpeg

The medical literature has been historically hostile to organic foods, blaming in part erroneous information supplied by the health food movement for our ignorance of nutrition. But until just a few generations ago, all food was organic. It's kind of ironic that what we now call conventional food really isn't very conventional for our species.

By eating organic we can reduce our exposure to pesticides, but it remains unclear whether such a reduction in exposure is clinically relevant. In my video, Are Organic Foods Safer?, I talked about some of the test tube studies comparing health-related properties of organic versus conventional foods. Organic produce was found to have higher antioxidant and antimutagenic activity combined with better inhibition of cancer cell proliferation, but in terms of studies on actual people rather than petri dishes, there isn't much science either way.

Why can't you just compare the health of those who buy organic to those who don't? Organic consumers do report being significantly healthier than conventional consumers, but they also tend to eat more plant foods in general and less soda and alcohol, processed meat, or milk, and just eat healthier in general. No wonder they feel so much better!

Therefore, there is an urgent need for interventional trials, or studies following cohorts of people eating organic over time like the Million Women Study in the UK, which was the first to examine the association between the consumption of organic food and subsequent risk of cancer. The only significant risk reduction they found, though, was for non-Hodgkin's lymphoma. This is consistent with data showing a higher risk of developing lymphoma in those who have higher levels of pesticides stored in their butt fat, a study undertaken because farmworkers have been found to have higher rates of lymphoma.

Parental farmworker exposure is also associated with a birth defect of the penis called hypospadias, and so researchers decided to see if moms who failed to choose organic were at increased risk. Indeed they found that frequent consumption of conventional high-fat dairy products was associated with about double the odds of the birth defect. This could just be because those that choose organic have other related healthy behaviors, or it could be that high-fat foods like dairy products bioamplify the fat-soluble toxins in our environment.

In my video, Are Organic Foods Healthier?, you can see two other general population pesticide studies that have raised concerns. One study found about a 50 to 70% increase in the odds of ADHD among children with pesticide levels in their urine, and another that found triple the odds of testicular cancer among men with higher levels of organochlorine pesticides in their blood. 90% of such pollutants come from fish, meat, and dairy, which may help explain rising testicular cancer rates in many western countries since World War II.

What about interventional trials? All we have in the medical literature so far are studies showing organically grown food provides health benefits to fruit flies raised on diets of conventional versus organic produce when subjected to a variety of tests designed to assess overall fly health. And what do you know--flies raised on diets made from organically grown produce lived longer. Hmm, insects eating insecticides don't do as well. Not exactly much of a breakthrough!


For how to best get pesticides off of conventional produce, see my video How to Make Your Own Fruit and Vegetable Wash.

Pesticides are one thing, but Are Organic Foods More Nutritious?

Overall, Are the Benefits of Organic Food Underrated or Overrated?

For more on the impact of food contaminants during pregnancy, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Best Way to Wash Fruit and Vegetables

The Best Way to Wash Fruit and Vegetables.jpeg

How might we reduce our exposure to pesticide residues on fruits and vegetables? What about staying away from imported produce? Well, it turns out domestic produce may be even worse, dispelling the notion that imported fruits and vegetables pose greater potential health risks to consumers.

Buying organic dramatically reduces dietary exposure to pesticides, but it does not eliminate the potential risk. Pesticide residues are detectable in about one in ten organic crop samples, due to cross-contamination from neighboring fields, the continued presence of very persistent pesticides like DDT in the soil, and accidental or fraudulent use.

By choosing organic, one hopes to shift exposures from a range of uncertain risk to more of a range of negligible risk, but even if all we had to eat were the most pesticide-laden of conventional produce, there is a clear consensus in the scientific community that the health benefits from consuming fruits and vegetables outweigh any potential risks from pesticide residues. And we can easily reduce whatever risk there is by rinsing our fruits and vegetables under running water.

There are, however, a plethora of products alleged by advertisers to reduce fruit and produce pesticide residues more effectively than water and touted to concerned consumers. For example, Procter & Gamble introduced a fruit and vegetable wash. As part of the introduction, T.G.I. Friday's jumped on board bragging on their menus that the cheese and bacon puddles they call potato skins were first washed with the new product. After all, it was proclaimed proven to be 98% more effective than water in removing pesticides.

So researchers put it to the test and it did no better than plain tap water.

Shortly thereafter Procter & Gamble discontinued the product, but numerous others took its place claiming their vegetable washes are three, four, five or even ten times more effective than water, to which a researcher replied, "That's mathematically impossible." If water removes 50%, you can't take off ten times more than 50%. They actually found water removed up to 80% of pesticide residues like the fungicide, Captan, for example. So, for veggie washes to brag they are three, four, five, ten times better than water is indeed mathematically questionable.

Other fruit and vegetable washes have since been put to the test. Researchers compared FIT Fruit & Vegetable Wash, Organiclean, Vegi-Clean, and dishwashing soap to just rinsing in plain tap water. 196 samples of lettuce, strawberries, and tomatoes were tested, and researchers found little or no difference between just rinsing with tap water compared to any of the veggie washes (or the dish soap). They all just seemed like a waste of money. The researchers concluded that just the mechanical action of rubbing the produce under tap water seemed to do it, and that using detergents or fruit and vegetable washes do not enhance the removal of pesticide residues from produce above that of just rinsing with tap water alone.

That may not be saying much, though. Captan appears to be the exception. When plain water was tried against a half dozen other pesticides, less than half the residues were removed.

Fingernail polish works better, but the goal is to end up with a less toxic, not a more toxic tomato.

We need a straightforward, plausible, and safe method for enhanced pesticide removal. Is there anything we can add to the water to boost its pesticide-stripping abilities? Check out my video, How to Make Your Own Fruit & Vegetable Wash.

If you soak potatoes in water, between about 2% to 13% of the pesticides are removed, but a 5% acetic acid solution removes up to 100%. What's that? Plain white vinegar. But 5% is full strength.

What about diluted vinegar? Diluted vinegar only seemed marginally better than tap water for removing pesticide residues. Using full strength vinegar would get expensive, though. Thankfully there's something cheaper that works even better: salt water.

A 10% salt solution appears to work as good or better than full-strength vinegar. To make a 10% salt solution you just have to mix up about one-part salt to nine-parts water (though make sure to rinse all of the salt off before eating!).

There's not much you can do for the pesticides in animal products, though. The top sources of some pesticides are fruits and vegetables; but for other pesticides, it's dairy, eggs, and meat because the chemicals build up in fat. What do you do about pesticides in animal products? Hard boiling eggs appears to destroy more pesticides that scrambling, but for the pesticides that build up in the fat in fish or chicken, cooking can sometimes increase pesticide levels that obviously can't just wash off. In fact, washing meat, poultry, or eggs is considered one of the top ten dangerous food safety mistakes.

For more on organic foods, see:

The most important reason to wash produce is to reduce the risk of food-borne illness. Ironically, the food poisoning viruses may be found in the pesticides themselves. Check out my video Norovirus Food Poisoning from Pesticides.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Best Way to Wash Fruit and Vegetables

The Best Way to Wash Fruit and Vegetables.jpeg

How might we reduce our exposure to pesticide residues on fruits and vegetables? What about staying away from imported produce? Well, it turns out domestic produce may be even worse, dispelling the notion that imported fruits and vegetables pose greater potential health risks to consumers.

Buying organic dramatically reduces dietary exposure to pesticides, but it does not eliminate the potential risk. Pesticide residues are detectable in about one in ten organic crop samples, due to cross-contamination from neighboring fields, the continued presence of very persistent pesticides like DDT in the soil, and accidental or fraudulent use.

By choosing organic, one hopes to shift exposures from a range of uncertain risk to more of a range of negligible risk, but even if all we had to eat were the most pesticide-laden of conventional produce, there is a clear consensus in the scientific community that the health benefits from consuming fruits and vegetables outweigh any potential risks from pesticide residues. And we can easily reduce whatever risk there is by rinsing our fruits and vegetables under running water.

There are, however, a plethora of products alleged by advertisers to reduce fruit and produce pesticide residues more effectively than water and touted to concerned consumers. For example, Procter & Gamble introduced a fruit and vegetable wash. As part of the introduction, T.G.I. Friday's jumped on board bragging on their menus that the cheese and bacon puddles they call potato skins were first washed with the new product. After all, it was proclaimed proven to be 98% more effective than water in removing pesticides.

So researchers put it to the test and it did no better than plain tap water.

Shortly thereafter Procter & Gamble discontinued the product, but numerous others took its place claiming their vegetable washes are three, four, five or even ten times more effective than water, to which a researcher replied, "That's mathematically impossible." If water removes 50%, you can't take off ten times more than 50%. They actually found water removed up to 80% of pesticide residues like the fungicide, Captan, for example. So, for veggie washes to brag they are three, four, five, ten times better than water is indeed mathematically questionable.

Other fruit and vegetable washes have since been put to the test. Researchers compared FIT Fruit & Vegetable Wash, Organiclean, Vegi-Clean, and dishwashing soap to just rinsing in plain tap water. 196 samples of lettuce, strawberries, and tomatoes were tested, and researchers found little or no difference between just rinsing with tap water compared to any of the veggie washes (or the dish soap). They all just seemed like a waste of money. The researchers concluded that just the mechanical action of rubbing the produce under tap water seemed to do it, and that using detergents or fruit and vegetable washes do not enhance the removal of pesticide residues from produce above that of just rinsing with tap water alone.

That may not be saying much, though. Captan appears to be the exception. When plain water was tried against a half dozen other pesticides, less than half the residues were removed.

Fingernail polish works better, but the goal is to end up with a less toxic, not a more toxic tomato.

We need a straightforward, plausible, and safe method for enhanced pesticide removal. Is there anything we can add to the water to boost its pesticide-stripping abilities? Check out my video, How to Make Your Own Fruit & Vegetable Wash.

If you soak potatoes in water, between about 2% to 13% of the pesticides are removed, but a 5% acetic acid solution removes up to 100%. What's that? Plain white vinegar. But 5% is full strength.

What about diluted vinegar? Diluted vinegar only seemed marginally better than tap water for removing pesticide residues. Using full strength vinegar would get expensive, though. Thankfully there's something cheaper that works even better: salt water.

A 10% salt solution appears to work as good or better than full-strength vinegar. To make a 10% salt solution you just have to mix up about one-part salt to nine-parts water (though make sure to rinse all of the salt off before eating!).

There's not much you can do for the pesticides in animal products, though. The top sources of some pesticides are fruits and vegetables; but for other pesticides, it's dairy, eggs, and meat because the chemicals build up in fat. What do you do about pesticides in animal products? Hard boiling eggs appears to destroy more pesticides that scrambling, but for the pesticides that build up in the fat in fish or chicken, cooking can sometimes increase pesticide levels that obviously can't just wash off. In fact, washing meat, poultry, or eggs is considered one of the top ten dangerous food safety mistakes.

For more on organic foods, see:

The most important reason to wash produce is to reduce the risk of food-borne illness. Ironically, the food poisoning viruses may be found in the pesticides themselves. Check out my video Norovirus Food Poisoning from Pesticides.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

White Meat May Be as Cholesterol-Raising as Red

White Meat May Be as Cholesterol-Raising as Red.jpeg

In light of recommendations for heart healthy eating from national professional organizations encouraging Americans to limit their intake of meat, the beef industry commissioned and co-wrote a review of randomized controlled trials comparing the effects of beef versus chicken and fish on cholesterol levels published over the last 60 years. They found that the impact of beef consumption on the cholesterol profile of humans is similar to that of fish and/or poultry--meaning that switching from red meat to white meat likely wouldn't make any difference. And that's really no surprise, given how fat we've genetically manipulated chickens to be these days, up to ten times more fat than they had a century ago (see Does Eating Obesity Cause Obesity?).

There are a number of cuts of beef that have less cholesterol-raising saturated fat than chicken (see BOLD Indeed: Beef Lowers Cholesterol?), so it's not so surprising that white meat was found to be no better than red, but the beef industry researchers conclusion was that "therefore you can eat beef as part of a balanced diet to manage your cholesterol."

Think of the Coke versus Pepsi analogy. Coke has less sugar than Pepsi: 15 spoonfuls of sugar per bottle instead of 16. If studies on blood sugar found no difference between drinking Coke versus Pepsi, you wouldn't conclude that "Pepsi may be considered when recommending diets for the management of blood sugars," you'd say they're both equally as bad so we should ideally consume neither.

That's a standard drug industry trick. You don't compare your fancy new drug to the best out there, but to some miserable drug to make yours look better. Note they didn't compare beef to plant proteins, like in this study published in the American Journal of Clinical Nutrition. As I started reading it, though, I was surprised that they found no benefit of switching to a plant protein diet either. What were they eating? You can see the comparison in Switching from Beef to Chicken & Fish May Not Lower Cholesterol.

For breakfast, the plant group got a kidney bean and tomato casserole and a salad, instead of a burger. And for dinner, instead of another burger, the plant protein group just got some boring vegetables. So why was the cholesterol of the plant group as bad as the animal group? They had the plant protein group eating three tablespoons of beef tallow every day--three tablespoons of straight beef fat!

This was part of a series of studies that tried to figure out what was so cholesterol-raising about meat--was it the animal protein or was it the animal fat? So, researchers created fake meat products made to have the same amount of saturated fat and cholesterol by adding extracted animal fats and cholesterol. Who could they get to make such strange concoctions? The Ralston Purina dog food company.

But what's crazy is that even when keeping the saturated animal fat and cholesterol the same (by adding meat fats to the veggie burgers and making the plant group swallow cholesterol pills to equal it out), sometimes they still saw a cholesterol lowering advantage in the plant protein group.

If you switch people from meat to tofu, their cholesterol goes down, but what if you switch them from meat to tofu plus lard? Then their cholesterol may stay the same, though tofu and lard may indeed actually be better than meat, since it may result in less oxidized cholesterol. More on the role of oxidized cholesterol can be found in my videos Does Cholesterol Size Matter? and Arterial Acne.

Just swapping plant protein for animal protein may have advantages, but if you really want to maximize the power of diet to lower cholesterol, you may have to move entirely toward plants. The standard dietary advice to cut down on fatty meat, dairy, and eggs may lower cholesterol 5-10%, but flexitarian or vegetarian diets may drop our levels 10 to 15%, vegan diets 15 to 25%, and healthier vegan diets can cut up to 35%, as seen in this study out of Canada showing a whopping 61 point drop in LDL cholesterol within a matter of weeks.


You thought chicken was a low-fat food? It used to be a century ago, but not anymore. It may even be one of the reasons we're getting fatter as well: Chicken Big: Poultry and Obesity and Infectobesity: Adenovirus 36 and Childhood Obesity.

Isn't protein just protein? How does our body know if it's coming from a plant or an animal? How could it have different effects on cardiovascular risk? See Protein and Heart Disease, another reason why Plant Protein [is] Preferable.

Lowering cholesterol in your blood is as simple as reducing one's intake of three things: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

What about those news stories on the "vindication" of saturated fat? See the sneaky science in The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: CDC/Debora Cartagena via Freestockphotos.biz. This image has been modified.

Original Link

White Meat May Be as Cholesterol-Raising as Red

White Meat May Be as Cholesterol-Raising as Red.jpeg

In light of recommendations for heart healthy eating from national professional organizations encouraging Americans to limit their intake of meat, the beef industry commissioned and co-wrote a review of randomized controlled trials comparing the effects of beef versus chicken and fish on cholesterol levels published over the last 60 years. They found that the impact of beef consumption on the cholesterol profile of humans is similar to that of fish and/or poultry--meaning that switching from red meat to white meat likely wouldn't make any difference. And that's really no surprise, given how fat we've genetically manipulated chickens to be these days, up to ten times more fat than they had a century ago (see Does Eating Obesity Cause Obesity?).

There are a number of cuts of beef that have less cholesterol-raising saturated fat than chicken (see BOLD Indeed: Beef Lowers Cholesterol?), so it's not so surprising that white meat was found to be no better than red, but the beef industry researchers conclusion was that "therefore you can eat beef as part of a balanced diet to manage your cholesterol."

Think of the Coke versus Pepsi analogy. Coke has less sugar than Pepsi: 15 spoonfuls of sugar per bottle instead of 16. If studies on blood sugar found no difference between drinking Coke versus Pepsi, you wouldn't conclude that "Pepsi may be considered when recommending diets for the management of blood sugars," you'd say they're both equally as bad so we should ideally consume neither.

That's a standard drug industry trick. You don't compare your fancy new drug to the best out there, but to some miserable drug to make yours look better. Note they didn't compare beef to plant proteins, like in this study published in the American Journal of Clinical Nutrition. As I started reading it, though, I was surprised that they found no benefit of switching to a plant protein diet either. What were they eating? You can see the comparison in Switching from Beef to Chicken & Fish May Not Lower Cholesterol.

For breakfast, the plant group got a kidney bean and tomato casserole and a salad, instead of a burger. And for dinner, instead of another burger, the plant protein group just got some boring vegetables. So why was the cholesterol of the plant group as bad as the animal group? They had the plant protein group eating three tablespoons of beef tallow every day--three tablespoons of straight beef fat!

This was part of a series of studies that tried to figure out what was so cholesterol-raising about meat--was it the animal protein or was it the animal fat? So, researchers created fake meat products made to have the same amount of saturated fat and cholesterol by adding extracted animal fats and cholesterol. Who could they get to make such strange concoctions? The Ralston Purina dog food company.

But what's crazy is that even when keeping the saturated animal fat and cholesterol the same (by adding meat fats to the veggie burgers and making the plant group swallow cholesterol pills to equal it out), sometimes they still saw a cholesterol lowering advantage in the plant protein group.

If you switch people from meat to tofu, their cholesterol goes down, but what if you switch them from meat to tofu plus lard? Then their cholesterol may stay the same, though tofu and lard may indeed actually be better than meat, since it may result in less oxidized cholesterol. More on the role of oxidized cholesterol can be found in my videos Does Cholesterol Size Matter? and Arterial Acne.

Just swapping plant protein for animal protein may have advantages, but if you really want to maximize the power of diet to lower cholesterol, you may have to move entirely toward plants. The standard dietary advice to cut down on fatty meat, dairy, and eggs may lower cholesterol 5-10%, but flexitarian or vegetarian diets may drop our levels 10 to 15%, vegan diets 15 to 25%, and healthier vegan diets can cut up to 35%, as seen in this study out of Canada showing a whopping 61 point drop in LDL cholesterol within a matter of weeks.


You thought chicken was a low-fat food? It used to be a century ago, but not anymore. It may even be one of the reasons we're getting fatter as well: Chicken Big: Poultry and Obesity and Infectobesity: Adenovirus 36 and Childhood Obesity.

Isn't protein just protein? How does our body know if it's coming from a plant or an animal? How could it have different effects on cardiovascular risk? See Protein and Heart Disease, another reason why Plant Protein [is] Preferable.

Lowering cholesterol in your blood is as simple as reducing one's intake of three things: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

What about those news stories on the "vindication" of saturated fat? See the sneaky science in The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: CDC/Debora Cartagena via Freestockphotos.biz. This image has been modified.

Original Link

Foods Linked to ALS

Foods Linked to ALS.jpeg

As explored in my video ALS (Lou Gehrig's Disease): Fishing for Answers, there may be a link in the consumption of the neurotoxin BMAA, produced by algae blooms, and increased risk of ALS. It now appears that BMAA could be found in high concentrations in aquatic animals in many areas of the world.

This could explain ALS clustering around lakes in New Hampshire--up to 25 times the expected rate of ALS with some families eating fish several times a week. Or in Wisconsin, where the most significant ALS risk factor was the past consumption of fish out of Lake Michigan. Or clustering in Finland's Lakeland district, or seafood eaters in France, or around the Baltic sea, building up particularly in fish, mussels and oysters.

When I think of algae blooms I think of the Chesapeake bay near where I live, that gets choked off thanks in part to the poultry industry pollution. And indeed there was a recent report linking BMAA exposure to ALS in Maryland. The ALS victims, all of whom ate Chesapeake Bay blue crabs every week, lived within a half mile of each other, which raised some eyebrows at the Hopkins ALS center. And so researchers tested a few crabs, and two out of three tested positive for BMAA, indicating that the neurotoxin is present in the aquatic food chain of the Chesapeake Bay and is a potential route for human exposure.

To bring the story full circle, things in Guam, where the link between BMAA consumption and ALS was first discovered, are looking up. The ALS epidemic there may have been triggered by their acquisition of guns. Now though, the epidemic appears to be over thanks to near-extinction of the fruit bats they were eating due to over-hunting. But while the rates decline in Guam, neurodegenerative diseases like ALS around the rest of the world are on the rise.

It's plausible that humans have been exposed to some level of BMAA throughout their evolutionary history, but the increase in algae blooms as a result of human activities is probably increasing this exposure. There is a general consensus that harmful algal blooms are increasing worldwide thanks in part to industrialized agriculture (as shown in my video Diet & Amyotrophic Lateral Sclerosis-ALS). More people means more sewage, fertilizer, and manure, which can mean more algae, which may mean more exposure to this neurotoxin, leading to a possible increased incidence of neurodegenerative diseases such as Alzheimer's, Parkinson's, and ALS.

BMAA is considered a strong contender as the cause of, or at least a major contributor to the cause of both endemic and sporadic ALS and Alzheimer's disease, and possibly conferring risk for Parkinson's diseases as well. The ramifications of this discovery are enormous.

As researchers from Australia stated, "With substantial and ever growing evidence that BMAA does play a role in the onset and progression of neurodegenerative diseases, the most important question is, what mode of activity does BMAA exert?" Huh? That's not the most important question we should be asking. The most important question is "How can we reduce our risk?"

We know that the presence of BMAA in aquatic food chains could be a significant human health hazard. There may even be a synergistic toxicity between mercury and BMAA, making certain fish even riskier. Until more is known about the possible link of BMAA to Alzheimer's and ALS, it may be prudent to limit exposure of BMAA in the human diet.

For other neurotoxins found in the food supply, see Amnesic Seafood Poisoning, Essential Tremor and Diet, Ciguatera Poisoning & Chronic Fatigue Syndrome.

Other toxic substances can also build up in the aquatic food chain, for example:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Peter Miller / Flickr. This image has been modified.

Original Link

Foods Linked to ALS

Foods Linked to ALS.jpeg

As explored in my video ALS (Lou Gehrig's Disease): Fishing for Answers, there may be a link in the consumption of the neurotoxin BMAA, produced by algae blooms, and increased risk of ALS. It now appears that BMAA could be found in high concentrations in aquatic animals in many areas of the world.

This could explain ALS clustering around lakes in New Hampshire--up to 25 times the expected rate of ALS with some families eating fish several times a week. Or in Wisconsin, where the most significant ALS risk factor was the past consumption of fish out of Lake Michigan. Or clustering in Finland's Lakeland district, or seafood eaters in France, or around the Baltic sea, building up particularly in fish, mussels and oysters.

When I think of algae blooms I think of the Chesapeake bay near where I live, that gets choked off thanks in part to the poultry industry pollution. And indeed there was a recent report linking BMAA exposure to ALS in Maryland. The ALS victims, all of whom ate Chesapeake Bay blue crabs every week, lived within a half mile of each other, which raised some eyebrows at the Hopkins ALS center. And so researchers tested a few crabs, and two out of three tested positive for BMAA, indicating that the neurotoxin is present in the aquatic food chain of the Chesapeake Bay and is a potential route for human exposure.

To bring the story full circle, things in Guam, where the link between BMAA consumption and ALS was first discovered, are looking up. The ALS epidemic there may have been triggered by their acquisition of guns. Now though, the epidemic appears to be over thanks to near-extinction of the fruit bats they were eating due to over-hunting. But while the rates decline in Guam, neurodegenerative diseases like ALS around the rest of the world are on the rise.

It's plausible that humans have been exposed to some level of BMAA throughout their evolutionary history, but the increase in algae blooms as a result of human activities is probably increasing this exposure. There is a general consensus that harmful algal blooms are increasing worldwide thanks in part to industrialized agriculture (as shown in my video Diet & Amyotrophic Lateral Sclerosis-ALS). More people means more sewage, fertilizer, and manure, which can mean more algae, which may mean more exposure to this neurotoxin, leading to a possible increased incidence of neurodegenerative diseases such as Alzheimer's, Parkinson's, and ALS.

BMAA is considered a strong contender as the cause of, or at least a major contributor to the cause of both endemic and sporadic ALS and Alzheimer's disease, and possibly conferring risk for Parkinson's diseases as well. The ramifications of this discovery are enormous.

As researchers from Australia stated, "With substantial and ever growing evidence that BMAA does play a role in the onset and progression of neurodegenerative diseases, the most important question is, what mode of activity does BMAA exert?" Huh? That's not the most important question we should be asking. The most important question is "How can we reduce our risk?"

We know that the presence of BMAA in aquatic food chains could be a significant human health hazard. There may even be a synergistic toxicity between mercury and BMAA, making certain fish even riskier. Until more is known about the possible link of BMAA to Alzheimer's and ALS, it may be prudent to limit exposure of BMAA in the human diet.

For other neurotoxins found in the food supply, see Amnesic Seafood Poisoning, Essential Tremor and Diet, Ciguatera Poisoning & Chronic Fatigue Syndrome.

Other toxic substances can also build up in the aquatic food chain, for example:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Peter Miller / Flickr. This image has been modified.

Original Link

What Is the Cause of ALS?

What Is the Cause of ALS?.jpeg

Lou Gehrig's disease, known as amyotrophic lateral sclerosis or ALS, strikes healthy, middle-aged people seemingly at random. Of the major neurodegenerative diseases, it has the least hope for treatment and survival. Although mental capabilities stay intact, ALS paralyzes people, often from the outside in, and most patients die within three years when they can no longer breathe or swallow. At any given time, an estimated 30,000 are fighting for their life with it in this country. We each have about a 1 in 400 chance of developing this dreaded disease.

ALS is more common than generally recognized, with an incidence rate now close to that of multiple sclerosis. What causes it? 50 years ago scientists found that the rate of ALS among the indigenous peoples on the island of Guam was 100 times that found in the rest of the world, potentially offering a clue into the cause of the disease. So instead of 1 in 400, in some villages in Guam, 1 in 3 adults died of the disease!

Cycad trees were suspected, since the powdered seeds were a dietary staple of the natives and there were reports of livestock showing neurological disease after eating from it. And indeed, a new neurotoxin was found in the seeds, called BMAA. Maybe that's what was causing such high levels of ALS? But the amount of BMAA in the seeds people ate was so small that it was calculated that people would have to eat a thousand kilograms a day to get a toxic dose--that's around a ton of seeds daily. So, the whole cycad theory was thrown out and the trail went cold.

But then famed neurologist Oliver Sachs and colleagues had an idea. Cycad seeds were not all the natives ate. They also ate fruit bats (also known as flying foxes) who ate Cycad tree seeds. So maybe this is a case of biomagnification up the food chain, as about a "tons" worth of BMAA does accumulate in the flesh of flying foxes.

The final nail in the coffin was the detection of high levels of BMMA in the brains of six out of six native victims of the disease on autopsy, but not in control brains of healthy people that died. So with the final puzzle piece apparently in place, the solution was found to this mysterious cluster on some exotic tropical isle of ALS/PDC, so-called because the form of ALS attacking people in Guam also had signs of Parkinson's disease and dementia, so they called it ALS parkinsonism dementia complex. So when the researchers were choosing a comparison group control brains, they also included two cases of Alzheimer's disease. But these brains had BMAA in their brains too. And not only that, but these were Alzheimer's victims in Canada, on the opposite side of the globe. So the researchers ran more autopsies and found no BMAA in the control brains, but BMAA detected in all the Canadian Alzheimer's victims tested.

Canadians don't eat fruit bats. What was going on? Well, the neurotoxin isn't made by the bat, it's made by the trees, although Canadians don't eat cycad trees either. It turns out that cycad trees don't make the neurotoxin either; it's actually a blue-green algae that grows in the roots of the cycad trees which makes the BMAA that gets in the seeds, which gets in the bats, that finally gets into the people. And it's not just this specific type of blue-green algae, but nearly all types of blue-green algae found all over the world produce BMAA. Up until only about a decade ago we thought this neurotoxin was confined to this one weird tropical tree, but now we know the neurotoxin is created by algae throughout the world; from Europe to the U.S., Australia, the Middle East, and elsewhere.

If these neurotoxin-producing blue-green algae are ubiquitous throughout the world, maybe BMAA is a cause of progressive neurodegenerative diseases including ALS worldwide. Researchers in Miami put it to the test and found BMAA in the brains of Floridians who died from sporadic Alzheimer's disease and ALS, but not in the brains of those that died of a different neurodegenerative disease called Huntington's, which we know is caused by a genetic mutation, not some neurotoxin. They found significant levels of BMAA in 49 out of 50 samples from 12 Alzheimer's patients and 13 ALS patients. The results (shown in the my video ALS: Fishing for Answers) for American Alzheimer's and ALS patients from the Atlantic southeast and from Canadian Alzheimer's patients from the Pacific Northwest suggested that exposure to BMAA was widespread. The same thing was then found in the brains of those dying from Parkinson's disease. You can apparently even pick up more BMAA in the hair of live ALS patients compared to controls.

So is BMAA present in Florida seafood? Yes, in freshwater fish and shellfish, like oysters and bass, and out in the ocean as well. Some of the fish, shrimp, and crabs had levels of BMAA comparable to those found in the fruit bats of Guam.

In the U.S., fish may be the fruit bats.

Maybe the ice bucket challenge should be to not serve seafood in them. See my video Diet and Amyotrophic Lateral Sclerosis (ALS) for more.

Diet may also play a role in other neurodegenerative disorders:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: GraphicStock. This image has been modified.

Original Link

What Is the Cause of ALS?

What Is the Cause of ALS?.jpeg

Lou Gehrig's disease, known as amyotrophic lateral sclerosis or ALS, strikes healthy, middle-aged people seemingly at random. Of the major neurodegenerative diseases, it has the least hope for treatment and survival. Although mental capabilities stay intact, ALS paralyzes people, often from the outside in, and most patients die within three years when they can no longer breathe or swallow. At any given time, an estimated 30,000 are fighting for their life with it in this country. We each have about a 1 in 400 chance of developing this dreaded disease.

ALS is more common than generally recognized, with an incidence rate now close to that of multiple sclerosis. What causes it? 50 years ago scientists found that the rate of ALS among the indigenous peoples on the island of Guam was 100 times that found in the rest of the world, potentially offering a clue into the cause of the disease. So instead of 1 in 400, in some villages in Guam, 1 in 3 adults died of the disease!

Cycad trees were suspected, since the powdered seeds were a dietary staple of the natives and there were reports of livestock showing neurological disease after eating from it. And indeed, a new neurotoxin was found in the seeds, called BMAA. Maybe that's what was causing such high levels of ALS? But the amount of BMAA in the seeds people ate was so small that it was calculated that people would have to eat a thousand kilograms a day to get a toxic dose--that's around a ton of seeds daily. So, the whole cycad theory was thrown out and the trail went cold.

But then famed neurologist Oliver Sachs and colleagues had an idea. Cycad seeds were not all the natives ate. They also ate fruit bats (also known as flying foxes) who ate Cycad tree seeds. So maybe this is a case of biomagnification up the food chain, as about a "tons" worth of BMAA does accumulate in the flesh of flying foxes.

The final nail in the coffin was the detection of high levels of BMMA in the brains of six out of six native victims of the disease on autopsy, but not in control brains of healthy people that died. So with the final puzzle piece apparently in place, the solution was found to this mysterious cluster on some exotic tropical isle of ALS/PDC, so-called because the form of ALS attacking people in Guam also had signs of Parkinson's disease and dementia, so they called it ALS parkinsonism dementia complex. So when the researchers were choosing a comparison group control brains, they also included two cases of Alzheimer's disease. But these brains had BMAA in their brains too. And not only that, but these were Alzheimer's victims in Canada, on the opposite side of the globe. So the researchers ran more autopsies and found no BMAA in the control brains, but BMAA detected in all the Canadian Alzheimer's victims tested.

Canadians don't eat fruit bats. What was going on? Well, the neurotoxin isn't made by the bat, it's made by the trees, although Canadians don't eat cycad trees either. It turns out that cycad trees don't make the neurotoxin either; it's actually a blue-green algae that grows in the roots of the cycad trees which makes the BMAA that gets in the seeds, which gets in the bats, that finally gets into the people. And it's not just this specific type of blue-green algae, but nearly all types of blue-green algae found all over the world produce BMAA. Up until only about a decade ago we thought this neurotoxin was confined to this one weird tropical tree, but now we know the neurotoxin is created by algae throughout the world; from Europe to the U.S., Australia, the Middle East, and elsewhere.

If these neurotoxin-producing blue-green algae are ubiquitous throughout the world, maybe BMAA is a cause of progressive neurodegenerative diseases including ALS worldwide. Researchers in Miami put it to the test and found BMAA in the brains of Floridians who died from sporadic Alzheimer's disease and ALS, but not in the brains of those that died of a different neurodegenerative disease called Huntington's, which we know is caused by a genetic mutation, not some neurotoxin. They found significant levels of BMAA in 49 out of 50 samples from 12 Alzheimer's patients and 13 ALS patients. The results (shown in the my video ALS: Fishing for Answers) for American Alzheimer's and ALS patients from the Atlantic southeast and from Canadian Alzheimer's patients from the Pacific Northwest suggested that exposure to BMAA was widespread. The same thing was then found in the brains of those dying from Parkinson's disease. You can apparently even pick up more BMAA in the hair of live ALS patients compared to controls.

So is BMAA present in Florida seafood? Yes, in freshwater fish and shellfish, like oysters and bass, and out in the ocean as well. Some of the fish, shrimp, and crabs had levels of BMAA comparable to those found in the fruit bats of Guam.

In the U.S., fish may be the fruit bats.

Maybe the ice bucket challenge should be to not serve seafood in them. See my video Diet and Amyotrophic Lateral Sclerosis (ALS) for more.

Diet may also play a role in other neurodegenerative disorders:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: GraphicStock. This image has been modified.

Original Link