Benefits of Oatmeal for Fatty Liver Disease

Benefits of Oatmeal for Fatty Liver Disease.jpeg

If oatmeal is so powerful that it can clear up some of the ravages of chemotherapy just applied to the skin (see my video Oatmeal Lotion for Chemotherapy-Induced Rash), what might it do if we actually ate it? Oats are reported to possess varied drug-like activities like lowering blood cholesterol and blood sugar, boosting our immune system, anticancer, antioxidant, and anti-atherosclerosis activites, in addition to being a topical anti-inflammatory, and reprtedly may also be useful in controlling childhood asthma and body weight.

Whole-grain intake in general is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain, as shown in my video Can Oatmeal Help Fatty Liver Disease?. All of the cohort studies on type 2 diabetes and heart disease show whole grain intake is associated with lower risk.

Researchers have observed the same for obesity--consistently less weight gain for those who consumed a few servings of whole grains every day. All the forward-looking population studies demonstrate that a higher intake of whole grains is associated with lower body mass index and body weight gain. However, these results do not clarify whether whole grain consumption is simply a marker of a healthier lifestyle or a factor favoring lower body weight.

For example, high whole grain consumers--those who eat whole wheat, brown rice, and oatmeal for breakfast--tend to be more physically active, smoke less, and consume more fruit, vegetables, and dietary fiber than those that instead reach for fruit loops. Statistically, one can control these factors, effectively comparing nonsmokers to nonsmokers with similar exercise and diet as most of the studies did, and they still found whole grains to be protective via a variety of mechanisms.

For example, in terms of helping with weight control, the soluble fiber of oatmeal forms a gel in the stomach, delaying stomach emptying, making one feel full for a longer period. It seems plausible that whole grain intake does indeed offer direct benefits, but only results of randomized controlled intervention studies can provide direct evidence of cause and effect. In other words, the evidence is clear that oatmeal consumers have lower rates of disease, but that's not the same as proving that if we start eating more oatmeal, our risk will drop. To know that, we need an interventional trial, ideally a blinded study where you give half the people oatmeal, and the other half fake placebo oatmeal that looks and tastes like oatmeal, to see if it actually works. And that's what we finally got--a double-blinded randomized trial of overweight and obese men and women. Almost 90% of the real oatmeal-treated subjects had reduced body weight, compared to no weight loss in the control group. They saw a slimmer waist on average, a 20 point drop in cholesterol, and an improvement in liver function.

Nonalcoholic fatty liver disease, meaning a fatty liver caused by excess food rather than excess drink, is now the most common cause of liver disease in the United States, and can lead in rare cases to cirrhosis of the liver, cancer of the liver, and death. Theoretically, whole grains could help prevent and treat fatty liver disease, but this is the first time it had been put to the test. A follow-up study in 2014 confirmed these findings of a protective role of whole grains, but refined grains was associated with increased risk. So one would not expect to get such wonderful results from wonder bread.

How can you make your oatmeal even healthier? See Antioxidants in a Pinch.

Whole Grains May Work As Well As Drugs for hypertension, but refined grain intake may linked with high blood pressure and diseases like diabetes. But If White Rice is Linked to Diabetes, What About China?.

More on keeping the liver healthy in videos like:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Striving for Alkaline Pee and Acidic Poo

Stool pH and Colon Cancer.jpg

More than 30 years ago, an idea was put forward that high colonic pH promoted colorectal cancer. A high colonic pH may promote the creation of carcinogens from bile acids, a process that is inhibited once you get below a pH of about 6.5. This is supported by data which shows those at higher risk for colon cancer may have a higher stool pH, and those at lower risk have a low pH. There was a dramatic difference between the two groups, with most of the high risk group over pH 8, and most of the low risk group under pH 6 (see Stool pH and Colon Cancer).

This may help explain the 50-fold lower rates of colon cancer in Africa compared to America. The bacteria we have in our gut depends on what we eat. If we eat lots of fiber, then we preferentially feed the fiber eating bacteria, which give us back all sorts of health promoting substances like short-chain fatty acids that have anti-inflammatory and anti-cancer properties. More of these organic acids were found in the stools of native Africans than African Americans. More acids, so lower pH. Whereas putrefactive bacteria, eating animal protein, are able to increase stool pH by producing alkaline metabolites like ammonia.

The pH of the stools of white versus black children in Africa was compared. Children were chosen because you can more readily sample their stools, particularly the rural black schoolchildren who were eating such high fiber diets--whole grains, legumes, nuts, vegetables, fruits, and wild greens--that 90% of them could produce a stool on demand. Stuffed from head to tail with plants, they could give you a stool sample at any time, just as easy as getting a urine sample. It was hard to even get access to the white kids, though, who were reluctant to participate in such investigations, even though they were given waxed cartons fitted with lids while all the black kids got was a plate and a square of paper towel.

The researchers found significantly lower fecal pH in those eating the traditional, rural plant-based diets compared to those eating the traditional Western diet, who were eating far fewer whole plant foods than the black children. But, remove some of those whole plant foods, like switch their corn for white bread for just a few days and their stool pH goes up, and add whole plant foods like an extra five to seven servings of fruit every day, and their stool pH goes down even further and gets more acidic. It makes sense because when you ferment fruits, veggies, and grains, they turn sour, like vinegar, sauerkraut, or sourdough, because good bacteria like lactobacillus produce organic acids like lactic acid. Those who eat a lot of plants have more of those good bugs. So, using the purple cabbage test highlighted in my video, Testing Your Diet with Pee & Purple Cabbage, we want blue pee, but pink poo.

If you compare the fecal samples of those eating vegetarian or vegan to those eating standard diets, plant-based diets appear to shift the makeup of the bacteria in our gut, resulting in a significantly lower stool pH, and the more plant-based, the lower the pH dropped. It's like a positive feedback loop: fiber-eating bacteria produce the acids to create the pH at which fiber-eating bacteria thrive while suppressing the group of less beneficial bugs.

It might taken even as little as two weeks to bring stool pH down on a plant-based diet. In a study published in the British Journal of Cancer, a dozen volunteers carefully selected for their trustworthiness and randomized to sequentially go on regular, vegetarian, or vegan diets and two weeks in, a significant drop in fecal pH was achieved eating completely plant-based.

But there are differing qualities of plant-based diets. For example, the two groups followed in the study I mentioned earlier had dramatically different stool pH, yet both groups were vegetarian. The high risk group was eating mostly refined grains, very little fiber, whereas the low risk group was eating whole grains and beans, packed with fiber for our fiber-friendly flora to munch on.

Just as a "reduction of high serum cholesterol contributes to the avoidance of coronary heart disease," a fall in the fecal pH value may contribute to the avoidance of bowel cancer and through the same means, eating more whole plant foods.

More on colon cancer prevention in:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Kitti Sukhonthanit © 123RF.com. This image has been modified.

Original Link

Striving for Alkaline Pee and Acidic Poo

Stool pH and Colon Cancer.jpg

More than 30 years ago, an idea was put forward that high colonic pH promoted colorectal cancer. A high colonic pH may promote the creation of carcinogens from bile acids, a process that is inhibited once you get below a pH of about 6.5. This is supported by data which shows those at higher risk for colon cancer may have a higher stool pH, and those at lower risk have a low pH. There was a dramatic difference between the two groups, with most of the high risk group over pH 8, and most of the low risk group under pH 6 (see Stool pH and Colon Cancer).

This may help explain the 50-fold lower rates of colon cancer in Africa compared to America. The bacteria we have in our gut depends on what we eat. If we eat lots of fiber, then we preferentially feed the fiber eating bacteria, which give us back all sorts of health promoting substances like short-chain fatty acids that have anti-inflammatory and anti-cancer properties. More of these organic acids were found in the stools of native Africans than African Americans. More acids, so lower pH. Whereas putrefactive bacteria, eating animal protein, are able to increase stool pH by producing alkaline metabolites like ammonia.

The pH of the stools of white versus black children in Africa was compared. Children were chosen because you can more readily sample their stools, particularly the rural black schoolchildren who were eating such high fiber diets--whole grains, legumes, nuts, vegetables, fruits, and wild greens--that 90% of them could produce a stool on demand. Stuffed from head to tail with plants, they could give you a stool sample at any time, just as easy as getting a urine sample. It was hard to even get access to the white kids, though, who were reluctant to participate in such investigations, even though they were given waxed cartons fitted with lids while all the black kids got was a plate and a square of paper towel.

The researchers found significantly lower fecal pH in those eating the traditional, rural plant-based diets compared to those eating the traditional Western diet, who were eating far fewer whole plant foods than the black children. But, remove some of those whole plant foods, like switch their corn for white bread for just a few days and their stool pH goes up, and add whole plant foods like an extra five to seven servings of fruit every day, and their stool pH goes down even further and gets more acidic. It makes sense because when you ferment fruits, veggies, and grains, they turn sour, like vinegar, sauerkraut, or sourdough, because good bacteria like lactobacillus produce organic acids like lactic acid. Those who eat a lot of plants have more of those good bugs. So, using the purple cabbage test highlighted in my video, Testing Your Diet with Pee & Purple Cabbage, we want blue pee, but pink poo.

If you compare the fecal samples of those eating vegetarian or vegan to those eating standard diets, plant-based diets appear to shift the makeup of the bacteria in our gut, resulting in a significantly lower stool pH, and the more plant-based, the lower the pH dropped. It's like a positive feedback loop: fiber-eating bacteria produce the acids to create the pH at which fiber-eating bacteria thrive while suppressing the group of less beneficial bugs.

It might taken even as little as two weeks to bring stool pH down on a plant-based diet. In a study published in the British Journal of Cancer, a dozen volunteers carefully selected for their trustworthiness and randomized to sequentially go on regular, vegetarian, or vegan diets and two weeks in, a significant drop in fecal pH was achieved eating completely plant-based.

But there are differing qualities of plant-based diets. For example, the two groups followed in the study I mentioned earlier had dramatically different stool pH, yet both groups were vegetarian. The high risk group was eating mostly refined grains, very little fiber, whereas the low risk group was eating whole grains and beans, packed with fiber for our fiber-friendly flora to munch on.

Just as a "reduction of high serum cholesterol contributes to the avoidance of coronary heart disease," a fall in the fecal pH value may contribute to the avoidance of bowel cancer and through the same means, eating more whole plant foods.

More on colon cancer prevention in:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Kitti Sukhonthanit © 123RF.com. This image has been modified.

Original Link

How to Prevent Ulcerative Colitis with Diet

Preventing Ulcerative Colitis with Diet.jpg

What has driven the dramatic increase in prevalence of the inflammatory bowel disease Crohn's disease in societies that rapidly westernized--a disease practically unknown just a century ago? What has changed in our internal and external environment that has led to the appearance of this horrible disease?

Japan suffered one of the most dramatic increases, and out of all the changing dietary components, animal protein appeared to be the strongest factor. There was an exponential increase in newly diagnosed Crohn's patients and daily animal protein intake, whereas the greater the vegetable protein, the fewer the cases of Crohn's, which is consistent with data showing a more plant-based diet may be successful in both preventing and treating Crohn's disease (See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease). But what about other inflammatory bowel diseases?

In the largest study of its kind, shown in my video Preventing Ulcerative Colitis with Diet, 60,000 people were followed for more than a decade. Researchers found that high total protein intake--specifically animal protein--was associated with a significantly increased risk of the other big inflammatory bowel disease, ulcerative colitis. It wasn't just protein in general, but the "association between high protein intake and inflammatory bowel disease risk was restricted to animal protein."Since World War II, animal protein intake has increased not only in Japan but also in all developed countries. This increase in animal protein consumption is thought to explain some of the increased incidence of inflammatory bowel disease in the second half of the 20th century.

Other studies found this as well, but why? What's the difference between animal protein and plant protein? Animal proteins tend to have more sulfur containing amino acids like methionine, which bacteria in our gut can turn into the toxic rotten egg smell gas, hydrogen sulfide. Emerging evidence suggests that sulfur compounds may play a role in the development of ulcerative colitis, a chronic inflammatory disease of the colon and rectum characterized by bloody diarrhea.

The first hint as to the importance of our gut flora was in the 1970's when "analysis of stools showed that their bulk was made up of mostly bacteria, not undigested material." We're pushing out trillions of bacteria a day and they just keep multiplying and multiplying. They do wonderful things for us like create the protective compound, butyrate, from the fiber we eat, but unfortunately, the bacteria may also elaborate toxic products from food residues such as hydrogen sulfide "in response to a high-meat diet."

Hydrogen sulfide is a bacterially derived cell poison that has been implicated in ulcerative colitis. We had always assumed that sulfide generation in the colon is driven by dietary components such as sulfur-containing amino acids, but we didn't know for sure until a study from Cambridge was published. Researchers had folks eat five different diets each with escalating meat contents from vegetarian all the way up to a steak each day. They found that the more meat one ate, the more sulfide; ten times more meat meant ten times more sulfide. They concluded that "dietary protein from meat is an important substrate for sulfide generation by bacteria in the human large intestine."

Hydrogen sulfide can then act as a free radical and damage our DNA at concentrations way below what our poor colon lining is exposed to on a routine basis, which may help explain why diets higher in meat and lower in fiber may produce so-called "fecal water" that causes about twice as much DNA damage. Fecal water is like when researchers make a tea from someone's stool.

The biology of sulfur in the human gut has escaped serious attention until recently. Previously it was just thought of as the rotten egg smell in malodorous gas, but the increase in sulfur compounds in response to a supplement of animal protein is not only of interest in the field of flatology--that is, the formal study of farts--but may also be of importance in the development of ulcerative colitis.

I have several videos on our microbiome, including:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: illustrator © 123RF.com. This image has been modified.

Original Link

How to Prevent Ulcerative Colitis with Diet

Preventing Ulcerative Colitis with Diet.jpg

What has driven the dramatic increase in prevalence of the inflammatory bowel disease Crohn's disease in societies that rapidly westernized--a disease practically unknown just a century ago? What has changed in our internal and external environment that has led to the appearance of this horrible disease?

Japan suffered one of the most dramatic increases, and out of all the changing dietary components, animal protein appeared to be the strongest factor. There was an exponential increase in newly diagnosed Crohn's patients and daily animal protein intake, whereas the greater the vegetable protein, the fewer the cases of Crohn's, which is consistent with data showing a more plant-based diet may be successful in both preventing and treating Crohn's disease (See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease). But what about other inflammatory bowel diseases?

In the largest study of its kind, shown in my video Preventing Ulcerative Colitis with Diet, 60,000 people were followed for more than a decade. Researchers found that high total protein intake--specifically animal protein--was associated with a significantly increased risk of the other big inflammatory bowel disease, ulcerative colitis. It wasn't just protein in general, but the "association between high protein intake and inflammatory bowel disease risk was restricted to animal protein."Since World War II, animal protein intake has increased not only in Japan but also in all developed countries. This increase in animal protein consumption is thought to explain some of the increased incidence of inflammatory bowel disease in the second half of the 20th century.

Other studies found this as well, but why? What's the difference between animal protein and plant protein? Animal proteins tend to have more sulfur containing amino acids like methionine, which bacteria in our gut can turn into the toxic rotten egg smell gas, hydrogen sulfide. Emerging evidence suggests that sulfur compounds may play a role in the development of ulcerative colitis, a chronic inflammatory disease of the colon and rectum characterized by bloody diarrhea.

The first hint as to the importance of our gut flora was in the 1970's when "analysis of stools showed that their bulk was made up of mostly bacteria, not undigested material." We're pushing out trillions of bacteria a day and they just keep multiplying and multiplying. They do wonderful things for us like create the protective compound, butyrate, from the fiber we eat, but unfortunately, the bacteria may also elaborate toxic products from food residues such as hydrogen sulfide "in response to a high-meat diet."

Hydrogen sulfide is a bacterially derived cell poison that has been implicated in ulcerative colitis. We had always assumed that sulfide generation in the colon is driven by dietary components such as sulfur-containing amino acids, but we didn't know for sure until a study from Cambridge was published. Researchers had folks eat five different diets each with escalating meat contents from vegetarian all the way up to a steak each day. They found that the more meat one ate, the more sulfide; ten times more meat meant ten times more sulfide. They concluded that "dietary protein from meat is an important substrate for sulfide generation by bacteria in the human large intestine."

Hydrogen sulfide can then act as a free radical and damage our DNA at concentrations way below what our poor colon lining is exposed to on a routine basis, which may help explain why diets higher in meat and lower in fiber may produce so-called "fecal water" that causes about twice as much DNA damage. Fecal water is like when researchers make a tea from someone's stool.

The biology of sulfur in the human gut has escaped serious attention until recently. Previously it was just thought of as the rotten egg smell in malodorous gas, but the increase in sulfur compounds in response to a supplement of animal protein is not only of interest in the field of flatology--that is, the formal study of farts--but may also be of importance in the development of ulcerative colitis.

I have several videos on our microbiome, including:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: illustrator © 123RF.com. This image has been modified.

Original Link

Improving Employee Diets Could Save Companies Millions

Plant-Based Workplace Intervention.jpg

The food, alcohol, and tobacco industries have been blamed for "manufacturing epidemics" of chronic disease, but they're just trying to sell more product like everyone else. And so if that means distorting science, creating front groups, compromising scientists, blocking public health policies... they're just trying to protect their business.

It's not about customer satisfaction, but shareholder satisfaction. How else could we have tobacco companies, for example, "continuing to produce products that kill one in two of their most loyal customers?"

Civil society organizations concerned with public health have earned a reputation for being "anti-industry," but the issue is not industry, but that sector of industry whose products are harmful to public health. We like the broccoli industry. In fact, the corporate world might end up leading the lifestyle medicine revolution.

As shown in my video, Plant-Based Workplace Intervention, the annual cost attributable to obesity alone among full-time employees is estimated at 70 billion dollars, primarily because obese employees are not as productive on the job. Having healthy employees is good for the bottom-line. Every dollar spent on wellness programs may offer a $3 return on investment. And if you track the market performance of companies that strive to nurture a culture of health, they appear to outperform their competition.

That's why companies like GEICO are exploring workplace dietary interventions (see my video, Slimming the Gecko). The remarkable success at GEICO headquarters led to an expansion of the program at corporate offices across the country, with test sites from San Diego to Macon, Georgia. Given that previous workplace studies have found that workers who ate a lot of animal protein had nearly five times the odds of obesity, whereas those that ate mostly plant protein appeared protected, obese and diabetic employees were asked to follow a plant-based diet of whole grains, vegetables, beans, and fruit while avoiding meat, dairy, and eggs. Compliance wasn't great. Fewer than half really got their animal product consumption down, but there were definitely improvements such as significant reductions in saturated fat, an increase in protective nutrients, and even noted weight loss, lower blood cholesterol levers, and better blood sugar control in diabetics.

And this was with no calorie counting, no portion control, and no exercise component. The weight reduction appears to result from feeling fuller earlier, due to higher dietary fiber intake. The difference in weight loss could also be the result of an increase in the thermic effect of food, allowing a small extra edge for weight loss in the vegan group. Those eating plant-based diets tend to burn off more calories in heat.

Eating plants appears to boost metabolism. This may be due to increased insulin sensitivity in cells, allowing cells to metabolize carbohydrates more quickly rather than storing them as body fat. "As a result, vegan diets have been shown to increase postprandial calorie burn by about 16%, up to three hours after consuming a meal."

Imagine how much money companies that self-insure their employees could save! See, for example:

Find out more on some of the potential downsides of corporate influence in videos like

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Ryan McGuire / Pixabay. This image has been modified.

Original Link

Improving Employee Diets Could Save Companies Millions

Plant-Based Workplace Intervention.jpg

The food, alcohol, and tobacco industries have been blamed for "manufacturing epidemics" of chronic disease, but they're just trying to sell more product like everyone else. And so if that means distorting science, creating front groups, compromising scientists, blocking public health policies... they're just trying to protect their business.

It's not about customer satisfaction, but shareholder satisfaction. How else could we have tobacco companies, for example, "continuing to produce products that kill one in two of their most loyal customers?"

Civil society organizations concerned with public health have earned a reputation for being "anti-industry," but the issue is not industry, but that sector of industry whose products are harmful to public health. We like the broccoli industry. In fact, the corporate world might end up leading the lifestyle medicine revolution.

As shown in my video, Plant-Based Workplace Intervention, the annual cost attributable to obesity alone among full-time employees is estimated at 70 billion dollars, primarily because obese employees are not as productive on the job. Having healthy employees is good for the bottom-line. Every dollar spent on wellness programs may offer a $3 return on investment. And if you track the market performance of companies that strive to nurture a culture of health, they appear to outperform their competition.

That's why companies like GEICO are exploring workplace dietary interventions (see my video, Slimming the Gecko). The remarkable success at GEICO headquarters led to an expansion of the program at corporate offices across the country, with test sites from San Diego to Macon, Georgia. Given that previous workplace studies have found that workers who ate a lot of animal protein had nearly five times the odds of obesity, whereas those that ate mostly plant protein appeared protected, obese and diabetic employees were asked to follow a plant-based diet of whole grains, vegetables, beans, and fruit while avoiding meat, dairy, and eggs. Compliance wasn't great. Fewer than half really got their animal product consumption down, but there were definitely improvements such as significant reductions in saturated fat, an increase in protective nutrients, and even noted weight loss, lower blood cholesterol levers, and better blood sugar control in diabetics.

And this was with no calorie counting, no portion control, and no exercise component. The weight reduction appears to result from feeling fuller earlier, due to higher dietary fiber intake. The difference in weight loss could also be the result of an increase in the thermic effect of food, allowing a small extra edge for weight loss in the vegan group. Those eating plant-based diets tend to burn off more calories in heat.

Eating plants appears to boost metabolism. This may be due to increased insulin sensitivity in cells, allowing cells to metabolize carbohydrates more quickly rather than storing them as body fat. "As a result, vegan diets have been shown to increase postprandial calorie burn by about 16%, up to three hours after consuming a meal."

Imagine how much money companies that self-insure their employees could save! See, for example:

Find out more on some of the potential downsides of corporate influence in videos like

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Ryan McGuire / Pixabay. This image has been modified.

Original Link

The Natural Human Diet

NF-Nov15 The Problem with the Paleo Diet Argument copy.jpg

Our epidemics of dietary disease have prompted a great deal of research into what humans are meant to eat for optimal health. In 1985, an influential article highlighted in my video The Problem With the Paleo Diet Argument was published proposing that our chronic diseases stem from a disconnect between what our bodies ate while evolving during the Stone Age (about 2 million years ago) and what we're stuffing our face with today. The proposal advocated for a return towards a hunter-gatherer type diet of lean meat, fruits, vegetables, and nuts.

It's reasonable to assume our nutritional requirements were established in the prehistoric past. However, the question of which prehistoric past we should emulate remains. Why just the last 2 million? We've been evolving for about 20 million years since our last common great ape ancestor, during which our nutrient requirements and digestive physiology were set down. Therefore our hunter-gatherer days at the tail end probably had little effect. What were we eating for the first 90% of our evolution? What the rest of the great apes ended up eating--95 percent or more plants.

This may explain why we're so susceptible to heart disease. For most of human evolution, cholesterol may have been virtually absent from the diet. No bacon, butter, or trans fats; and massive amounts of fiber, which pulls cholesterol from the body. This could have been a problem since our body needs a certain amount of cholesterol, but our bodies evolve not only to make cholesterol, but also to preserve it and recycle it.

If we think of the human body as a cholesterol-conserving machine, then plop it into the modern world of bacon, eggs, cheese, chicken, pork, and pastry; it's no wonder artery-clogging heart disease is our #1 cause of death. What used to be adaptive for 90% of our evolution--holding on to cholesterol at all costs since we weren't getting much in our diet--is today maladaptive, a liability leading to the clogging of our arteries. Our bodies just can't handle it.

As the editor-in-chief of the American Journal of Cardiology noted 25 years ago, no matter how much fat and cholesterol carnivores eat, they do not develop atherosclerosis. We can feed a dog 500 eggs worth of cholesterol and they just wag their tail; a dog's body is used to eating and getting rid of excess cholesterol. Conversely, within months a fraction of that cholesterol can start clogging the arteries of animals adapted to eating a more plant-based diet.

Even if our bodies were designed by natural selection to eat mostly fruit, greens and seeds for 90% of our evolution, why didn't we better adapt to meat-eating in the last 10%, during the Paleolithic? We've had nearly 2 million years to get used to all that extra saturated fat and cholesterol. If a lifetime of eating like that clogs up nearly everyone's arteries, why didn't the genes of those who got heart attacks die off and get replaced by those that could live to a ripe old age with clean arteries regardless of what they ate? Because most didn't survive into old age.

Most prehistoric peoples didn't live long enough to get heart attacks. When the average life expectancy is 25 years old, then the genes that get passed along are those that can live to reproductive age by any means necessary, and that means not dying of starvation. The more calories in food, the better. Eating lots of bone marrow and brains, human or otherwise, would have a selective advantage (as would discovering a time machine stash of Twinkies for that matter!). If we only have to live long enough to get our kids to puberty to pass along our genes, then we don't have to evolve any protections against the ravages of chronic disease.

To find a population nearly free of chronic disease in old age, we don't have to go back a million years. In the 20th century, networks of missionary hospitals in rural Africa found coronary artery disease virtually absent, and not just heart disease, but high blood pressure, stroke, diabetes, common cancers, and more. In a sense, these populations in rural China and Africa were eating the type of diet we've been eating for 90% of the last 20 million years, a diet almost exclusively of plant foods.

How do we know it was their diet and not something else? In the 25 year update to their original paleo paper, the authors tried to clarify that they did not then and do not now propose that people adopt a particular diet just based on what our ancient ancestors ate. Dietary recommendations must be put to the test. That's why the pioneering research from Pritikin, Ornish, and Esselstyn is so important, showing that plant-based diets can not only stop heart disease but have been proven to reverse it in the majority of patients. Indeed, it's the only diet that ever has.

For more on the absence of Western diseases in plant-based rural populations, see for example:

I've touched on "paleo" diets in the past:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nathan Rupert / Flickr

Original Link

The Natural Human Diet

NF-Nov15 The Problem with the Paleo Diet Argument copy.jpg

Our epidemics of dietary disease have prompted a great deal of research into what humans are meant to eat for optimal health. In 1985, an influential article highlighted in my video The Problem With the Paleo Diet Argument was published proposing that our chronic diseases stem from a disconnect between what our bodies ate while evolving during the Stone Age (about 2 million years ago) and what we're stuffing our face with today. The proposal advocated for a return towards a hunter-gatherer type diet of lean meat, fruits, vegetables, and nuts.

It's reasonable to assume our nutritional requirements were established in the prehistoric past. However, the question of which prehistoric past we should emulate remains. Why just the last 2 million? We've been evolving for about 20 million years since our last common great ape ancestor, during which our nutrient requirements and digestive physiology were set down. Therefore our hunter-gatherer days at the tail end probably had little effect. What were we eating for the first 90% of our evolution? What the rest of the great apes ended up eating--95 percent or more plants.

This may explain why we're so susceptible to heart disease. For most of human evolution, cholesterol may have been virtually absent from the diet. No bacon, butter, or trans fats; and massive amounts of fiber, which pulls cholesterol from the body. This could have been a problem since our body needs a certain amount of cholesterol, but our bodies evolve not only to make cholesterol, but also to preserve it and recycle it.

If we think of the human body as a cholesterol-conserving machine, then plop it into the modern world of bacon, eggs, cheese, chicken, pork, and pastry; it's no wonder artery-clogging heart disease is our #1 cause of death. What used to be adaptive for 90% of our evolution--holding on to cholesterol at all costs since we weren't getting much in our diet--is today maladaptive, a liability leading to the clogging of our arteries. Our bodies just can't handle it.

As the editor-in-chief of the American Journal of Cardiology noted 25 years ago, no matter how much fat and cholesterol carnivores eat, they do not develop atherosclerosis. We can feed a dog 500 eggs worth of cholesterol and they just wag their tail; a dog's body is used to eating and getting rid of excess cholesterol. Conversely, within months a fraction of that cholesterol can start clogging the arteries of animals adapted to eating a more plant-based diet.

Even if our bodies were designed by natural selection to eat mostly fruit, greens and seeds for 90% of our evolution, why didn't we better adapt to meat-eating in the last 10%, during the Paleolithic? We've had nearly 2 million years to get used to all that extra saturated fat and cholesterol. If a lifetime of eating like that clogs up nearly everyone's arteries, why didn't the genes of those who got heart attacks die off and get replaced by those that could live to a ripe old age with clean arteries regardless of what they ate? Because most didn't survive into old age.

Most prehistoric peoples didn't live long enough to get heart attacks. When the average life expectancy is 25 years old, then the genes that get passed along are those that can live to reproductive age by any means necessary, and that means not dying of starvation. The more calories in food, the better. Eating lots of bone marrow and brains, human or otherwise, would have a selective advantage (as would discovering a time machine stash of Twinkies for that matter!). If we only have to live long enough to get our kids to puberty to pass along our genes, then we don't have to evolve any protections against the ravages of chronic disease.

To find a population nearly free of chronic disease in old age, we don't have to go back a million years. In the 20th century, networks of missionary hospitals in rural Africa found coronary artery disease virtually absent, and not just heart disease, but high blood pressure, stroke, diabetes, common cancers, and more. In a sense, these populations in rural China and Africa were eating the type of diet we've been eating for 90% of the last 20 million years, a diet almost exclusively of plant foods.

How do we know it was their diet and not something else? In the 25 year update to their original paleo paper, the authors tried to clarify that they did not then and do not now propose that people adopt a particular diet just based on what our ancient ancestors ate. Dietary recommendations must be put to the test. That's why the pioneering research from Pritikin, Ornish, and Esselstyn is so important, showing that plant-based diets can not only stop heart disease but have been proven to reverse it in the majority of patients. Indeed, it's the only diet that ever has.

For more on the absence of Western diseases in plant-based rural populations, see for example:

I've touched on "paleo" diets in the past:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nathan Rupert / Flickr

Original Link

How May Eating Plants Help Prevent Alzheimer’s Disease?

NF-Oct27 Preventing Alzheimers Disease with Plants.jpeg

Intake of saturated fats and added sugars, two of the primary components of a modern Western diet, is linked with the development of Alzheimer's disease. There has been a global shift in dietary composition, from traditional diets high in starches and fiber, to what has been termed the Western diet, high in fat and sugar, low in whole, plant foods. What's so great about fruits and vegetables?

Plant-derived foods contain thousands of compounds with antioxidant properties, some of which can traverse the blood-brain barrier and may have neuroprotective effects by assisting with antioxidant defense. There's this concept of "brain rust," that neurodegenerative diseases arise from excess oxidative stress. But Nature has gifted humankind with a plethora of plants--fruits, vegetables, and nuts, and the diverse array of bioactive nutrients present in these natural products may play a pivotal role in prevention and one day, perhaps, even the cure of various neurodegenerative diseases, such as Alzheimer's disease.

Accumulated evidence suggests that naturally occurring plant compounds may potentially hinder neurodegeneration, and even improve memory and cognitive function, as I've shared in my videos Preventing Alzheimer's Disease with Plants and How to Slow Brain Aging By Two Years) and treating Alzheimer's with spices such as saffron or turmeric (See Saffron for the Treatment of Alzheimer's and Treating Alzheimer's with Turmeric).

Vegetables may be particularly protective, in part because of certain compounds we eat that concentrate in the brain, found in dark green leafy vegetables, the consumption of which are associated with lower rates of age-related cognitive decline.

Yet when you look at systemic reviews on what we can do to prevent cognitive decline, you'll see conclusions like this: "The current literature does not provide adequate evidence to make recommendations for interventions." The same is said for Alzheimer's, "Currently, insufficient evidence exists to draw firm conclusions on the association of any modifiable factors with risk of Alzheimer's disease." Doctors cite the lack of randomized controlled trials (RCTs) as the basis for their conclusions. RCTs are the gold standard used to test new medicines. This is where researchers randomize people into two groups, half get the drug and half don't, to control for confounding factors. The highest level of evidence is necessary because drugs may kill a hundred thousand Americans every year - not medication errors or illicit drugs, just regular, FDA-approved prescription drugs, making medication alone the sixth leading cause of death in the United States. So, you better make absolutely sure the benefits of new drugs outweigh the often life-threatening risks.

But we're talking about diet and exercise--the side effects are all good, so we don't need the same level of rigorous evidence to prescribe them.

A "modest proposal" was published recently in the Journal of Alzheimer's Disease, an editorial calling for a longitudinal study of dementia prevention. They agreed that definitive evidence for the effectiveness of dementia prevention methods was lacking, so we need large-scaled randomized trials. They suggested we start with 10,000 healthy volunteers in their 20's and split them into five groups. There's evidence, for example, that traumatic brain injury is a risk factor for Alzheimer's, because people with head injuries appear more likely to get the disease, but it's never been put to the test. So, they say, let's take two thousand people and beat half of them in the head with baseball bats, and the other half we'll use Styrofoam bats as a control. Afterall, until we have randomized controls, how can't physicians recommend patients not get hit in the head? They go further saying we should probably chain a thousand people to a treadmill for 40 years, and a thousand people to a couch before recommending exercise. A thousand will be forced to do crossword puzzles; another thousand forced to watch Jerry Springer reruns, lots of meat and dairy or not prescribed for another group for the next 40 years, and we can hook a thousand folks on four packs a day just to be sure.

We help our patients to quit smoking despite the fact that there's not a single randomized controlled trial where they held people down and piped smoke into their lungs for a few decades. It is time to realize that the ultimate study in regard to lifestyle and cognitive health cannot be done. Yet the absence of definitive evidence should not restrict physicians from making reasonable recommendations based on the evidence that is available.

I've discussed how drug-centric approaches to evidence-based medicine may neglect some of the most convincing data: Evidence-Based Medicine or Evidence-Biased?

To see how and why I built NutritionFacts.org on evidence-based principles, see my recent introductory videos:

A sampling of some of my Alzheimer's videos:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Image Credit: Michael Heim / 123rf

Original Link