How to Prevent Ulcerative Colitis with Diet

Preventing Ulcerative Colitis with Diet.jpg

What has driven the dramatic increase in prevalence of the inflammatory bowel disease Crohn's disease in societies that rapidly westernized--a disease practically unknown just a century ago? What has changed in our internal and external environment that has led to the appearance of this horrible disease?

Japan suffered one of the most dramatic increases, and out of all the changing dietary components, animal protein appeared to be the strongest factor. There was an exponential increase in newly diagnosed Crohn's patients and daily animal protein intake, whereas the greater the vegetable protein, the fewer the cases of Crohn's, which is consistent with data showing a more plant-based diet may be successful in both preventing and treating Crohn's disease (See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease). But what about other inflammatory bowel diseases?

In the largest study of its kind, shown in my video Preventing Ulcerative Colitis with Diet, 60,000 people were followed for more than a decade. Researchers found that high total protein intake--specifically animal protein--was associated with a significantly increased risk of the other big inflammatory bowel disease, ulcerative colitis. It wasn't just protein in general, but the "association between high protein intake and inflammatory bowel disease risk was restricted to animal protein."Since World War II, animal protein intake has increased not only in Japan but also in all developed countries. This increase in animal protein consumption is thought to explain some of the increased incidence of inflammatory bowel disease in the second half of the 20th century.

Other studies found this as well, but why? What's the difference between animal protein and plant protein? Animal proteins tend to have more sulfur containing amino acids like methionine, which bacteria in our gut can turn into the toxic rotten egg smell gas, hydrogen sulfide. Emerging evidence suggests that sulfur compounds may play a role in the development of ulcerative colitis, a chronic inflammatory disease of the colon and rectum characterized by bloody diarrhea.

The first hint as to the importance of our gut flora was in the 1970's when "analysis of stools showed that their bulk was made up of mostly bacteria, not undigested material." We're pushing out trillions of bacteria a day and they just keep multiplying and multiplying. They do wonderful things for us like create the protective compound, butyrate, from the fiber we eat, but unfortunately, the bacteria may also elaborate toxic products from food residues such as hydrogen sulfide "in response to a high-meat diet."

Hydrogen sulfide is a bacterially derived cell poison that has been implicated in ulcerative colitis. We had always assumed that sulfide generation in the colon is driven by dietary components such as sulfur-containing amino acids, but we didn't know for sure until a study from Cambridge was published. Researchers had folks eat five different diets each with escalating meat contents from vegetarian all the way up to a steak each day. They found that the more meat one ate, the more sulfide; ten times more meat meant ten times more sulfide. They concluded that "dietary protein from meat is an important substrate for sulfide generation by bacteria in the human large intestine."

Hydrogen sulfide can then act as a free radical and damage our DNA at concentrations way below what our poor colon lining is exposed to on a routine basis, which may help explain why diets higher in meat and lower in fiber may produce so-called "fecal water" that causes about twice as much DNA damage. Fecal water is like when researchers make a tea from someone's stool.

The biology of sulfur in the human gut has escaped serious attention until recently. Previously it was just thought of as the rotten egg smell in malodorous gas, but the increase in sulfur compounds in response to a supplement of animal protein is not only of interest in the field of flatology--that is, the formal study of farts--but may also be of importance in the development of ulcerative colitis.

I have several videos on our microbiome, including:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: illustrator © 123RF.com. This image has been modified.

Original Link

How to Prevent Ulcerative Colitis with Diet

Preventing Ulcerative Colitis with Diet.jpg

What has driven the dramatic increase in prevalence of the inflammatory bowel disease Crohn's disease in societies that rapidly westernized--a disease practically unknown just a century ago? What has changed in our internal and external environment that has led to the appearance of this horrible disease?

Japan suffered one of the most dramatic increases, and out of all the changing dietary components, animal protein appeared to be the strongest factor. There was an exponential increase in newly diagnosed Crohn's patients and daily animal protein intake, whereas the greater the vegetable protein, the fewer the cases of Crohn's, which is consistent with data showing a more plant-based diet may be successful in both preventing and treating Crohn's disease (See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease). But what about other inflammatory bowel diseases?

In the largest study of its kind, shown in my video Preventing Ulcerative Colitis with Diet, 60,000 people were followed for more than a decade. Researchers found that high total protein intake--specifically animal protein--was associated with a significantly increased risk of the other big inflammatory bowel disease, ulcerative colitis. It wasn't just protein in general, but the "association between high protein intake and inflammatory bowel disease risk was restricted to animal protein."Since World War II, animal protein intake has increased not only in Japan but also in all developed countries. This increase in animal protein consumption is thought to explain some of the increased incidence of inflammatory bowel disease in the second half of the 20th century.

Other studies found this as well, but why? What's the difference between animal protein and plant protein? Animal proteins tend to have more sulfur containing amino acids like methionine, which bacteria in our gut can turn into the toxic rotten egg smell gas, hydrogen sulfide. Emerging evidence suggests that sulfur compounds may play a role in the development of ulcerative colitis, a chronic inflammatory disease of the colon and rectum characterized by bloody diarrhea.

The first hint as to the importance of our gut flora was in the 1970's when "analysis of stools showed that their bulk was made up of mostly bacteria, not undigested material." We're pushing out trillions of bacteria a day and they just keep multiplying and multiplying. They do wonderful things for us like create the protective compound, butyrate, from the fiber we eat, but unfortunately, the bacteria may also elaborate toxic products from food residues such as hydrogen sulfide "in response to a high-meat diet."

Hydrogen sulfide is a bacterially derived cell poison that has been implicated in ulcerative colitis. We had always assumed that sulfide generation in the colon is driven by dietary components such as sulfur-containing amino acids, but we didn't know for sure until a study from Cambridge was published. Researchers had folks eat five different diets each with escalating meat contents from vegetarian all the way up to a steak each day. They found that the more meat one ate, the more sulfide; ten times more meat meant ten times more sulfide. They concluded that "dietary protein from meat is an important substrate for sulfide generation by bacteria in the human large intestine."

Hydrogen sulfide can then act as a free radical and damage our DNA at concentrations way below what our poor colon lining is exposed to on a routine basis, which may help explain why diets higher in meat and lower in fiber may produce so-called "fecal water" that causes about twice as much DNA damage. Fecal water is like when researchers make a tea from someone's stool.

The biology of sulfur in the human gut has escaped serious attention until recently. Previously it was just thought of as the rotten egg smell in malodorous gas, but the increase in sulfur compounds in response to a supplement of animal protein is not only of interest in the field of flatology--that is, the formal study of farts--but may also be of importance in the development of ulcerative colitis.

I have several videos on our microbiome, including:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: illustrator © 123RF.com. This image has been modified.

Original Link

How to Mitigate and Prevent Crohn’s Disease with Diet

NF-Sept20 Preventing Crohn's Disease With Diet.jpeg

Crohn's disease is an autoimmune disorder that affects more than a million Americans. It is an inflammatory bowel disease in which the body attacks the intestines. There is currently no known cure for Crohn's disease; current research focuses on controlling symptoms. There is no definitive medical or surgical therapy. The best we have is a plant-based diet, which has afforded the best relapse prevention to date.

Researchers got the idea to try a plant-based diet because diets rich in animal protein and animal fat have been found to cause a decrease in beneficial bacteria in the intestine. So, researchers designed a semi-vegetarian diet to counter that, and 100 percent of subjects stayed in remission the first year and 92 percent the second year. These results are far better than those obtained by current drugs, including new "biological agents" that can cost $40,000 a year, and can cause progressive multifocal leukoencephalopathy, a disabling and deadly brain disease. And a healthy diet appears to work better.

But what about preventing Crohn's disease in the first place? A systematic review of the scientific literature on dietary intake and the risk of developing inflammatory bowel disease found that a high intake of fats and meat was associated with an increased risk of Crohn's disease as well as ulcerative colitis, whereas high fiber and fruit intakes were associated with decreased risk of Crohn's.

These results were supported more recently by the Harvard Nurse's Health Study. Data revealed that long-term intake of dietary fiber, particularly from fruit, was associated with lower risk of Crohn's disease. Women who fell into in the highest long-term fiber consumption group had a 40 percent reduced risk, leading the accompanying editorial to conclude, "advocating for a high-fiber diet may ultimately reduce the incidence of Crohn's disease."

The irony is that the highest fiber group wasn't even eating the official recommended daily minimum of fiber intake. Apparently, even just being less fiber deficient has a wide range of benefits, including a significant reduction in the risk of developing Crohn's disease, but why? The authors suggest it's because "fiber plays a vital role in the maintenance of our intestinal barrier function."

Our skin keeps the outside world outside, and so does the lining of our gut, but in Crohn's disease, this barrier function is impaired. You can see this under an electron microscope as shown in my video Preventing Crohn's Disease With Diet. The tight junctions between the intestinal cells have all sorts of little holes and breaks. The thought is that the increase in prevalence of inflammatory bowel diseases may be that dietary changes lead to the breakdown of our intestinal barrier, potentially allowing the penetration of bacteria into our gut wall, which our body then attacks, triggering the inflammation.

We know fiber acts as a prebiotic in our colon (large intestine), feeding our good bacteria, but what does fiber do in our small intestine where Crohn's often starts? We didn't know, until a landmark study was published. Researchers wanted to find out what could stop Crohn's associated invasive bacteria from tunneling into the gut wall. They found the invasion is inhibited by the presence of certain soluble plant fibers, such as from plantains and broccoli at the kinds of concentrations one might expect after eating them. They wondered if that may explain why plantain-loving populations have lower levels of inflammatory bowel disease. But, the researchers also found that there was something in processed foods that facilitated the invasion of the bacteria. Polysorbate 80 was one of them, found predominantly in ice cream, but also found in Crisco, Cool Whip, condiments, cottage cheese--you just have to read the labels.

What about maltodextrin, which is found in artificial sweeteners like Splenda, snack foods, salad dressings, and fiber supplements? Maltodextrin markedly enhanced the ability of the bacteria to glob onto our intestinal cells, though other additives. Carboxy-methyl cellulose and xanthan gum appeared to have no adverse effects.

This may all help solve the mystery of the increasing prevalence of Crohn's disease in developed nations, where we're eating less fiber-containing whole plant foods and more processed foods. What we need now are interventional studies to see if boosting fiber intake and avoiding these food additives can be effective in preventing and treating Crohn's disease. But until then, what do we tell people? The available evidence points to a diet low in animal fat, with lots of soluble fiber containing plant foods, and avoiding processed fatty foods that contain these emulsifiers. We also want to make sure we're not ingesting traces of dishwashing detergent, which could have the same effect, so make sure to rinse your dishes well. Researchers found that some people wash dishes and then just leave them to dry without rinsing, which is probably not a good idea. We don't currently have studies that show that avoiding polysorbate 80 and rinsing dishes well actually helps. Nevertheless, advice based on 'best available evidence' is better than no advice at all.

Here's a video about using a more plant-based diet to reduce the risk of relapses: Dietary Treatment of Crohn's Disease.

I get a lot of questions about additives like polysorbate 80. I'm glad I was finally able to do a blog about it. Here are some videos on some others:

If you, like me, used to think all fiber was good for was helping with bowel regularity you'll be amazed! See for example, Dr. Burkitt's F-Word Diet.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations--2013: Uprooting the Leading Causes of Death, More Than an Apple a Day, 2014: From Table to Able: Combating Disabling Diseases with Food, 2015: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet, and my latest, 2016: How Not To Die: The Role of Diet in Preventing, Arresting, and Reversing Our Top 15 Killers.

Image Credit: Graphic Stock

Original Link

How a Tick Bite Can Lead to Food Allergies

NF-Aug25 Alpha Gal and the Lone Star Tick.jpg

In the beginning, Aristotle defined two forms of life on planet Earth: plants and animals. Two thousand years later, the light microscope was invented and we discovered tiny, single-celled organisms like amoebas. Then, the electron microscope was invented and we discovered bacteria. Finally, in 1969, biologists recognized fungi as a separate category, and we've had at least five kingdoms of life ever since.

In my video, Higher Quality May Mean Higher Risk, I talk about the potential downsides of consuming proteins from within our own kingdom, such as the impact our fellow animal proteins can have on boosting our liver's production of a cancer-promoting hormone called IGF-1.

In Eating Outside Our Kingdom, I talked about other potential advantages of preferably dipping into the plant and mushroom kingdoms for dinner, not only from a food safety perspective (we're more likely to get infected by animal pathogens than Dutch Elm Disease), but because of the potential for cross-reactivity between animal and human proteins. Our immune system is more likely to get confused between a chicken leg and our own legs than it is with a banana, so there may be less potential to trigger an autoimmune reaction, like degenerative brain diseases or inflammatory arthritis (See Diet & Rheumatoid Arthritis). In attacking some foreign animal meat protein, some of our own similarly composed tissues may get caught in the crossfire.

It's not just proteins. If you remember the Neu5Gc story (see Inflammatory Meat Molecule Neu5GC), sialic acid in other animals may cause inflammation in our arteries (see Nonhuman Molecules Lining Our Arteries) and help breast tumors and other human cancers to grow (see How Tumors Use Meat to Grow: Xeno-Autoantibodies). Now a new twist has been added to the story.

The reason Neu5Gc triggers inflammation is because humans lost the ability to make it two million years ago, and so when our body is exposed to it through animal products, it's treated as a foreign molecule, causing inflammation. But there's also another oligosaccharide called alpha-gal that humans, chimps, and apes lost the ability to make 20 million years ago, but is still made by a variety of animals, including many animals we eat.

Anti-gal antibodies may be involved in a number of detrimental processes that may result in allergic, autoimmune, and autoimmune-like diseases, such as auto-immune thyroid disorders. We see higher levels of anti-gal antibodies in Crohn's disease victims. These antibodies even react against about half of human breast tumors, and we can find them in atherosclerotic plaques in people's necks. However, those are all mostly speculative risks. We do know that alpha-gal is a major obstacle to transplanting pig organs into people, like kidneys, because our bodies reject alpha-gal as foreign. In fact, alpha-gal is thought to be the major target for human anti-pig antibodies.

It's interesting that if we look at those that abstain from pork for whatever reason, they have fewer swine-specific immune cells in their bloodstream. Researchers speculate that oral intake of pork could ferry swine molecules into the bloodstream via gut-infiltrating lymphocytes to prime the immune response. So we can have an allergic reaction to eating pig kidneys too, but such severe meat allergies were considered rare, until an unusual report surfaced. First described in 2009, the report included details on 24 cases of meat allergies triggered by tick bites.

Within a year, it was obvious that the cases should be counted in hundreds rather than dozens. By 2012, there were thousands of cases across a large area of the southern and eastern U.S., and new cases are now popping up in several countries around the world.

The culprit, the lone star tick, so-called because females have a white spot on their back, are famous for causing Masters' disease, a disease similar to Lyme syndrome, also known as STARI (southern tick associated rash illness). But thanks to the lone star tick steadily expanding its range (even as far as Long Island, NY), it's not necessarily just so Southern any more.

What is the relevance of tick bites to the production of allergy-causing anti-meat antibodies to alpha-gal? Good question. What we know is that if you get bitten by one of these ticks, you can develop an allergy to meat (See Alpha Gal and the Lone Star Tick). This appears to be the first example of a response to an external parasite giving rise to an important form of food allergy. We don't know the exact mechanism, but it may be because there's something in the tick saliva that's cross-reacting with alpha-gal, or because the tick is injecting you with animal allergens from its last meal.

What role may these tick-bite induced allergies play in the development of chronic hives and other allergic skin reactions in children? See Tick Bites, Meat Allergies, and Chronic Urticaria.

Here's some videos unearthing the IGF-1 story:

Neu5Gc is what opened up this whole can of worms:

I wonder if alpha gal is playing a role in the improvements in arthritis and Crohn's on plant-based diets: Dietary Treatment of Crohn's Disease and Diet & Rheumatoid Arthritis.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my videos for free by clicking here and watch my full 2012 - 2015 presentations Uprooting the Leading Causes of Death, More than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: USGS Bee Inventory and Monitoring Lab / Flickr

Original Link