How to Prevent a Heart Attack

How to Prevent a Heart Attack.jpeg

In my video Arterial Acne, I described atherosclerotic plaques as inflamed pockets of pus. Our coronary arteries start out healthy, but then the saturated fat, trans fat, and cholesterol in the standard American diet increases the cholesterol in our blood, which accumulates in the artery wall. This triggers an inflammatory response. This so-called fatty streak can then grow into an atherosclerotic plaque, which has the potential to rupture into our artery. If that happens, a blood clot forms, shutting off blood flow to a part of our heart, which can then die off and ultimately kill us.

What causes that final step, the rupture of the plaque? Ten years ago, researchers at Michigan State proposed a mechanism. They noted that when you look at ruptured plaques from autopsies of people who died from heart attacks, they were filled with cholesterol crystals protruding out from the plaque. So, the researchers wondered if maybe all that cholesterol in the plaque gets so supersaturated that it reaches a point where it crystallizes like sugar water forming rock candy. The growing crystals may then burst the plaque open.

To test out this theory they first made a supersaturated solution of cholesterol in a test tube to see if it expanded when it crystallized, and indeed it did-just like how water expands when it crystallizes into ice. In my video Cholesterol Crystals May Tear Through Our Artery Lining, you can see a massive cholesterol crystal shooting out the top of a test tube. Under a microscope, the tips of the cholesterol crystals were sharp jagged needles.

The researchers tried placing a thin membrane over the top of the test tube to see if the cholesterol needles would poke through, and indeed the sharp tips of the cholesterol crystals cut through the membrane. This suggested that the crystallization of supersaturated cholesterol in atherosclerotic plaques could indeed induce the rupture that kills us.

A test tube is one thing, but can you actually see crystals poking out in autopsy specimens? Yes, cholesterol crystals piercing the arterial plaque were found in patients who died with heart attacks, with extensive protrusions of cholesterol crystals into the middle of the artery.

What makes us think it was the crystals that actually burst the plaque? All those studied who died of acute heart attacks had perforating cholesterol crystals sticking out of their plaques, but no crystals were found perforating the arteries of people who had severe atherosclerosis, but died first of other, non-cardiac causes.

This can explain why dramatically lowering cholesterol levels with diet (and drugs, if necessary) can reduce the risk of fatal heart attack, by pulling cholesterol out of the artery wall, and decreasing the risk of crystallizing these cholesterol needles that may pop your plaque.

Given the powerful visuals, my Cholesterol Crystals May Tear Through Our Artery Lining video might be a good one to share with those in your life with heart disease, in hopes that they might reconsider eating artery-clogging diets.

Blocking the First Step of Heart Disease involves keeping our LDL cholesterol low by decreasing our intake of Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero. Swapping red meat for white won't do it: Switching From Beef to Chicken and Fish May Not Lower Cholesterol

Does it matter if LDL cholesterol in our blood is small and dense or large and fluffy? See my video Does Cholesterol Size Matter?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Five Most Important Dietary Tweaks

The Five Most Important Dietary Tweaks.jpeg

Generally, adherence to healthy lifestyle patterns has decreased during the last 18 years. Obesity is up, exercise is down, and the number of people eating just five servings of fruits and veggies a day dropped like a rock. And we didn't start out that great to begin with.

Only 3% of Americans at the turn of the 21st century had the following four healthy lifestyle characteristics: not smoking, not overweight, five daily servings of fruits and vegetables, and exercising a half hour a day at least five days a week. Whether people were wealthy or college-educated didn't matter; no sub-group even remotely met clinical or public health recommendations.

Where are people falling down the most? You can see in my video What Percent of Americans Lead Healthy Lifestyles?. If you look at heart disease risk factors, for example, most people don't smoke and about half are exercising. But if we look at the healthy diet score-which is based on things like drinking less than four cups of soda a week-a scale of zero to five, only about 1% of Americans score a four or five. The American Heart Association's aggressive 2020 target to improve that by 20% would bring us up to 1.2%.

Since we've known for decades that advanced coronary artery disease may be present by age 20--with atherosclerosis often even present in young children--it is particularly disturbing that healthy lifestyle choices are declining rather than improving in the U.S.

In terms of life expectancy, the U.S. is down around 27 or 28 out of the 34 OECD free-market democracies. The people of Slovenia live a year longer than citizens of the United States. Why? According to the most rigorous analysis of risk factors ever published, the number one cause of death and disability in the United States is our diet.

It's the food.

According to the Global Burden of Disease study, the worst five things about our diet are: we don't eat enough fruit, we don't eat enough nuts and seeds, we eat too much salt, too much processed meat, and not enough vegetables.

Studies that have looked at diet quality and chronic disease mortality risk found that those scoring higher (e.g. more whole plant foods), reduced the risk of dying prematurely from heart disease, cancer, and all causes of death combined. There is now an overwhelming body of clinical and epidemiological evidence illustrating the dramatic impact of a healthy lifestyle on reducing all-cause mortality and preventing chronic diseases such as coronary heart disease, stroke, diabetes, and cancer.

Why do we eat so poorly? Aren't we scared of dying from these horrible chronic diseases? It's almost as if we're eating as though our future didn't matter. And there's actually data to back that up, from a study entitled Death Row Nutrition.

The growing macabre fascination with speculating about one's ''last meal'' offers a window into one's true consumption desires when one's value of the future is discounted close to zero. In contrast to pop culture anecdotes, a group of Cornell researchers created a catalog of actual last meals-the final food requests of 247 individuals executed in the United States during a recent five-year period. Meat was the most common request. The researchers go out of their way to note that tofu never made the list, and no one asked for a vegetarian meal. In fact, if you compare the last meals to what Americans normally eat, there's not much difference.

If we continue to eat as though they were our last meals, eventually, they will be.


A few years ago I did a video called Nation's Diet in Crisis. It's sad that it doesn't seem like much has changed. How Many Meet the Simple Seven? is another video in which you can see how your own habits stack up.

For more on fruits and veggies and living longer, see Fruits and Longevity: How Many Minutes per Mouthful? Surprised that nuts made the longevity list? See Nuts May Help Prevent Death. What about legumes? See Increased Lifespan from Beans.

The reason public health professionals are so keen on measuring lifestyle characteristics is because modest improvements may have extraordinary effects. See, for example:

Didn't know the beginnings of heart disease may already be present in children? See my video Heart Disease Starts in Childhood. Think that's tragic? Check out Heart Disease May Start in the Womb. Is it too late if we've been eating poorly most of our lives? It's Never Too Late to Start Eating Healthier.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

How Much Fiber Should You Eat Every Day?

How Much Fiber Should You Eat Every Day.jpeg

High dietary fiber intake may help prevent strokes. The belief that dietary fiber intake is protectively associated with certain diseases was postulated 40 years ago and then enormously fueled and kept alive by a great body of science since. Today it is generally believed that eating lots of fiber-rich foods helps prevent obesity, diabetes, and cardiovascular diseases such as stroke.

Strokes are the second most common cause of death worldwide. Moreover, stroke is a leading cause of disability, and so preventing strokes in the first place--what's called primary prevention--should therefore, be a key public health priority (see How to Prevent a Stroke).

The best observational studies to date found that fiber appears to significantly protect against the risk of stroke. Different strokes for different folks, depending, evidently, on how much fiber they ate. Notably, increasing fiber just seven grams a day was associated with a 7% reduction in stroke risk. And seven grams is easy, that's like a serving of whole grain pasta with tomato sauce and an apple.

What's the mechanism? Maybe it's that fiber helps lower cholesterol and blood sugar levels. Or it could just be that those eating more fiber are just eating more vegetables, or fewer calories, or less meat and fat, or improving digestion, all of which may slim us down and lower our blood pressure and the amount of inflammation in our bodies. Does it really matter, though? As Dr. Burkitt commented on the biblical passage, "A man scatters seed on the land--the seed sprouts and opens--how, he does not know," the farmer doesn't wait to find out. Had the farmer postponed his sowing until he understood seed germination, he would not have lasted very long. So yes, let's keep trying to figure out why fiber is protective, but in the meanwhile, we should be increasing our intake of fiber, which is to say increasing our intake of whole plant foods.

It's never too early to start eating healthier. Strokes are one of many complications of arterial stiffness. Though our first stroke might not happen until our 50's, our arteries may have been stiffening for decades leading up to it. Hundreds of kids were followed for 24 years, from age 13 in through 36 and researchers found that lower intake of fiber during a young age was associated with stiffening of the arteries leading up to the brain. Even by age 13, they could see differences in arterial stiffness depending on diet. Fiber intake is important at any age.

Again, it doesn't take much. One extra apple a day or an extra quarter cup of broccoli might translate into meaningful differences in arterial stiffness in adulthood. If you really don't want a stroke, we should try to get 25 grams a day of soluble fiber (found concentrated in beans, oats, nuts, and berries) and 47 grams a day of insoluble fiber (concentrated in whole grains). One would have to eat an extraordinarily healthy diet to get that much, yet these cut-off values could be considered as the minimum recommended daily intake of soluble and insoluble fiber to prevent stroke. The researchers admit these are higher than those commonly and arbitrarily proposed as "adequate" levels by scientific societies, but should we care about what authorities think is practical? They should just share the best scienceand let us make up our own minds.

Someone funded by Kellogg's wrote in to complain that in practice, such fiber intakes are "unachievable" and that the message should just be the more, the better--like maybe just have a bowl of cereal or something.

The real Dr. Kellogg was actually one of our most famous physicians, credited for being one of the first to sound the alarm about smoking, and who may have been the first American physician to have recognized the field of nutrition as a science. He would be rolling in his grave today if he knew what his family's company had become.


More on preventing strokes can be found here:

More on the wonders of fiber in:

It really is never too early to start eating healthier. See, for example, Heart Disease Starts in Childhood, How to Prevent Prediabetes in Children, Heart Disease May Start in the Womb, and Should All Children Have their Cholesterol Checked?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

How Much Fiber Should You Eat Every Day?

How Much Fiber Should You Eat Every Day.jpeg

High dietary fiber intake may help prevent strokes. The belief that dietary fiber intake is protectively associated with certain diseases was postulated 40 years ago and then enormously fueled and kept alive by a great body of science since. Today it is generally believed that eating lots of fiber-rich foods helps prevent obesity, diabetes, and cardiovascular diseases such as stroke.

Strokes are the second most common cause of death worldwide. Moreover, stroke is a leading cause of disability, and so preventing strokes in the first place--what's called primary prevention--should therefore, be a key public health priority (see How to Prevent a Stroke).

The best observational studies to date found that fiber appears to significantly protect against the risk of stroke. Different strokes for different folks, depending, evidently, on how much fiber they ate. Notably, increasing fiber just seven grams a day was associated with a 7% reduction in stroke risk. And seven grams is easy, that's like a serving of whole grain pasta with tomato sauce and an apple.

What's the mechanism? Maybe it's that fiber helps lower cholesterol and blood sugar levels. Or it could just be that those eating more fiber are just eating more vegetables, or fewer calories, or less meat and fat, or improving digestion, all of which may slim us down and lower our blood pressure and the amount of inflammation in our bodies. Does it really matter, though? As Dr. Burkitt commented on the biblical passage, "A man scatters seed on the land--the seed sprouts and opens--how, he does not know," the farmer doesn't wait to find out. Had the farmer postponed his sowing until he understood seed germination, he would not have lasted very long. So yes, let's keep trying to figure out why fiber is protective, but in the meanwhile, we should be increasing our intake of fiber, which is to say increasing our intake of whole plant foods.

It's never too early to start eating healthier. Strokes are one of many complications of arterial stiffness. Though our first stroke might not happen until our 50's, our arteries may have been stiffening for decades leading up to it. Hundreds of kids were followed for 24 years, from age 13 in through 36 and researchers found that lower intake of fiber during a young age was associated with stiffening of the arteries leading up to the brain. Even by age 13, they could see differences in arterial stiffness depending on diet. Fiber intake is important at any age.

Again, it doesn't take much. One extra apple a day or an extra quarter cup of broccoli might translate into meaningful differences in arterial stiffness in adulthood. If you really don't want a stroke, we should try to get 25 grams a day of soluble fiber (found concentrated in beans, oats, nuts, and berries) and 47 grams a day of insoluble fiber (concentrated in whole grains). One would have to eat an extraordinarily healthy diet to get that much, yet these cut-off values could be considered as the minimum recommended daily intake of soluble and insoluble fiber to prevent stroke. The researchers admit these are higher than those commonly and arbitrarily proposed as "adequate" levels by scientific societies, but should we care about what authorities think is practical? They should just share the best scienceand let us make up our own minds.

Someone funded by Kellogg's wrote in to complain that in practice, such fiber intakes are "unachievable" and that the message should just be the more, the better--like maybe just have a bowl of cereal or something.

The real Dr. Kellogg was actually one of our most famous physicians, credited for being one of the first to sound the alarm about smoking, and who may have been the first American physician to have recognized the field of nutrition as a science. He would be rolling in his grave today if he knew what his family's company had become.


More on preventing strokes can be found here:

More on the wonders of fiber in:

It really is never too early to start eating healthier. See, for example, Heart Disease Starts in Childhood, How to Prevent Prediabetes in Children, Heart Disease May Start in the Womb, and Should All Children Have their Cholesterol Checked?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

How Much Fiber Should You Eat Every Day?

How Much Fiber Should You Eat Every Day.jpeg

High dietary fiber intake may help prevent strokes. The belief that dietary fiber intake is protectively associated with certain diseases was postulated 40 years ago and then enormously fueled and kept alive by a great body of science since. Today it is generally believed that eating lots of fiber-rich foods helps prevent obesity, diabetes, and cardiovascular diseases such as stroke.

Strokes are the second most common cause of death worldwide. Moreover, stroke is a leading cause of disability, and so preventing strokes in the first place--what's called primary prevention--should therefore, be a key public health priority (see How to Prevent a Stroke).

The best observational studies to date found that fiber appears to significantly protect against the risk of stroke. Different strokes for different folks, depending, evidently, on how much fiber they ate. Notably, increasing fiber just seven grams a day was associated with a 7% reduction in stroke risk. And seven grams is easy, that's like a serving of whole grain pasta with tomato sauce and an apple.

What's the mechanism? Maybe it's that fiber helps lower cholesterol and blood sugar levels. Or it could just be that those eating more fiber are just eating more vegetables, or fewer calories, or less meat and fat, or improving digestion, all of which may slim us down and lower our blood pressure and the amount of inflammation in our bodies. Does it really matter, though? As Dr. Burkitt commented on the biblical passage, "A man scatters seed on the land--the seed sprouts and opens--how, he does not know," the farmer doesn't wait to find out. Had the farmer postponed his sowing until he understood seed germination, he would not have lasted very long. So yes, let's keep trying to figure out why fiber is protective, but in the meanwhile, we should be increasing our intake of fiber, which is to say increasing our intake of whole plant foods.

It's never too early to start eating healthier. Strokes are one of many complications of arterial stiffness. Though our first stroke might not happen until our 50's, our arteries may have been stiffening for decades leading up to it. Hundreds of kids were followed for 24 years, from age 13 in through 36 and researchers found that lower intake of fiber during a young age was associated with stiffening of the arteries leading up to the brain. Even by age 13, they could see differences in arterial stiffness depending on diet. Fiber intake is important at any age.

Again, it doesn't take much. One extra apple a day or an extra quarter cup of broccoli might translate into meaningful differences in arterial stiffness in adulthood. If you really don't want a stroke, we should try to get 25 grams a day of soluble fiber (found concentrated in beans, oats, nuts, and berries) and 47 grams a day of insoluble fiber (concentrated in whole grains). One would have to eat an extraordinarily healthy diet to get that much, yet these cut-off values could be considered as the minimum recommended daily intake of soluble and insoluble fiber to prevent stroke. The researchers admit these are higher than those commonly and arbitrarily proposed as "adequate" levels by scientific societies, but should we care about what authorities think is practical? They should just share the best scienceand let us make up our own minds.

Someone funded by Kellogg's wrote in to complain that in practice, such fiber intakes are "unachievable" and that the message should just be the more, the better--like maybe just have a bowl of cereal or something.

The real Dr. Kellogg was actually one of our most famous physicians, credited for being one of the first to sound the alarm about smoking, and who may have been the first American physician to have recognized the field of nutrition as a science. He would be rolling in his grave today if he knew what his family's company had become.


More on preventing strokes can be found here:

More on the wonders of fiber in:

It really is never too early to start eating healthier. See, for example, Heart Disease Starts in Childhood, How to Prevent Prediabetes in Children, Heart Disease May Start in the Womb, and Should All Children Have their Cholesterol Checked?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Why Is Milk Consumption Associated with More Bone Fractures?

Why Is Milk Consumption Associated with More Bone Fractures?.jpg

Milk is touted to build strong bones, but a compilation of all the best studies found no association between milk consumption and hip fracture risk, so drinking milk as an adult might not help bones, but what about in adolescence? Harvard researchers decided to put it to the test.

Studies have shown that greater milk consumption during childhood and adolescence contributes to peak bone mass, and is therefore expected to help avoid osteoporosis and bone fractures in later life. But that's not what researchers have found (as you can see in my video Is Milk Good for Our Bones?). Milk consumption during teenage years was not associated with a lower risk of hip fracture, and if anything, milk consumption was associated with a borderline increase in fracture risk in men.

It appears that the extra boost in total body bone mineral density from getting extra calcium is lost within a few years; even if you keep the calcium supplementation up. This suggests a partial explanation for the long-standing enigma that hip fracture rates are highest in populations with the greatest milk consumption. This may be an explanation for why they're not lower, but why would they be higher?

This enigma irked a Swedish research team, puzzled because studies again and again had shown a tendency of a higher risk of fracture with a higher intake of milk. Well, there is a rare birth defect called galactosemia, where babies are born without the enzymes needed to detoxify the galactose found in milk, so they end up with elevated levels of galactose in their blood, which can causes bone loss even as kids. So maybe, the Swedish researchers figured, even in normal people that can detoxify the stuff, it might not be good for the bones to be drinking it every day.

And galactose doesn't just hurt the bones. Galactose is what scientists use to cause premature aging in lab animals--it can shorten their lifespan, cause oxidative stress, inflammation, and brain degeneration--just with the equivalent of like one to two glasses of milk's worth of galactose a day. We're not rats, though. But given the high amount of galactose in milk, recommendations to increase milk intake for prevention of fractures could be a conceivable contradiction. So, the researchers decided to put it to the test, looking at milk intake and mortality as well as fracture risk to test their theory.

A hundred thousand men and women were followed for up to 20 years. Researchers found that milk-drinking women had higher rates of death, more heart disease, and significantly more cancer for each glass of milk. Three glasses a day was associated with nearly twice the risk of premature death, and they had significantly more bone and hip fractures. More milk, more fractures.

Men in a separate study also had a higher rate of death with higher milk consumption, but at least they didn't have higher fracture rates. So, the researchers found a dose dependent higher rate of both mortality and fracture in women, and a higher rate of mortality in men with milk intake, but the opposite for other dairy products like soured milk and yogurt, which would go along with the galactose theory, since bacteria can ferment away some of the lactose. To prove it though, we need a randomized controlled trial to examine the effect of milk intake on mortality and fractures. As the accompanying editorial pointed out, we better find this out soon since milk consumption is on the rise around the world.

What can we do for our bones, then? Weight-bearing exercise such as jumping, weight-lifting, and walking with a weighted vest or backpack may help, along with getting enough calcium (Alkaline Diets, Animal Protein, & Calcium Loss) and vitamin D (Resolving the Vitamin D-Bate). Eating beans (Phytates for the Prevention of Osteoporosis) and avoiding phosphate additives (Phosphate Additives in Meat Purge and Cola) may also help.

Maybe the galactose angle can help explain the findings on prostate cancer (Prostate Cancer and Organic Milk vs. Almond Milk) and Parkinson's disease (Preventing Parkinson's Disease With Diet).

Galactose is a milk sugar. There's also concern about milk proteins (see my casomorphin series) and fats (The Saturated Fat Studies: Buttering Up the Public and Trans Fat in Meat and Dairy) as well as the hormones (Dairy Estrogen and Male Fertility, Estrogen in Meat, Dairy, and Eggs and Why Do Vegan Women Have 5x Fewer Twins?).

Milk might also play a role in diabetes (Does Casein in Milk Trigger Type 1 Diabetes, Does Bovine Insulin in Milk Trigger Type 1 Diabetes?) and breast cancer (Is Bovine Leukemia in Milk Infectious?, The Role of Bovine Leukemia Virus in Breast Cancer, and Industry Response to Bovine Leukemia Virus in Breast Cancer).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Why Is Milk Consumption Associated with More Bone Fractures?

Why Is Milk Consumption Associated with More Bone Fractures?.jpg

Milk is touted to build strong bones, but a compilation of all the best studies found no association between milk consumption and hip fracture risk, so drinking milk as an adult might not help bones, but what about in adolescence? Harvard researchers decided to put it to the test.

Studies have shown that greater milk consumption during childhood and adolescence contributes to peak bone mass, and is therefore expected to help avoid osteoporosis and bone fractures in later life. But that's not what researchers have found (as you can see in my video Is Milk Good for Our Bones?). Milk consumption during teenage years was not associated with a lower risk of hip fracture, and if anything, milk consumption was associated with a borderline increase in fracture risk in men.

It appears that the extra boost in total body bone mineral density from getting extra calcium is lost within a few years; even if you keep the calcium supplementation up. This suggests a partial explanation for the long-standing enigma that hip fracture rates are highest in populations with the greatest milk consumption. This may be an explanation for why they're not lower, but why would they be higher?

This enigma irked a Swedish research team, puzzled because studies again and again had shown a tendency of a higher risk of fracture with a higher intake of milk. Well, there is a rare birth defect called galactosemia, where babies are born without the enzymes needed to detoxify the galactose found in milk, so they end up with elevated levels of galactose in their blood, which can causes bone loss even as kids. So maybe, the Swedish researchers figured, even in normal people that can detoxify the stuff, it might not be good for the bones to be drinking it every day.

And galactose doesn't just hurt the bones. Galactose is what scientists use to cause premature aging in lab animals--it can shorten their lifespan, cause oxidative stress, inflammation, and brain degeneration--just with the equivalent of like one to two glasses of milk's worth of galactose a day. We're not rats, though. But given the high amount of galactose in milk, recommendations to increase milk intake for prevention of fractures could be a conceivable contradiction. So, the researchers decided to put it to the test, looking at milk intake and mortality as well as fracture risk to test their theory.

A hundred thousand men and women were followed for up to 20 years. Researchers found that milk-drinking women had higher rates of death, more heart disease, and significantly more cancer for each glass of milk. Three glasses a day was associated with nearly twice the risk of premature death, and they had significantly more bone and hip fractures. More milk, more fractures.

Men in a separate study also had a higher rate of death with higher milk consumption, but at least they didn't have higher fracture rates. So, the researchers found a dose dependent higher rate of both mortality and fracture in women, and a higher rate of mortality in men with milk intake, but the opposite for other dairy products like soured milk and yogurt, which would go along with the galactose theory, since bacteria can ferment away some of the lactose. To prove it though, we need a randomized controlled trial to examine the effect of milk intake on mortality and fractures. As the accompanying editorial pointed out, we better find this out soon since milk consumption is on the rise around the world.

What can we do for our bones, then? Weight-bearing exercise such as jumping, weight-lifting, and walking with a weighted vest or backpack may help, along with getting enough calcium (Alkaline Diets, Animal Protein, & Calcium Loss) and vitamin D (Resolving the Vitamin D-Bate). Eating beans (Phytates for the Prevention of Osteoporosis) and avoiding phosphate additives (Phosphate Additives in Meat Purge and Cola) may also help.

Maybe the galactose angle can help explain the findings on prostate cancer (Prostate Cancer and Organic Milk vs. Almond Milk) and Parkinson's disease (Preventing Parkinson's Disease With Diet).

Galactose is a milk sugar. There's also concern about milk proteins (see my casomorphin series) and fats (The Saturated Fat Studies: Buttering Up the Public and Trans Fat in Meat and Dairy) as well as the hormones (Dairy Estrogen and Male Fertility, Estrogen in Meat, Dairy, and Eggs and Why Do Vegan Women Have 5x Fewer Twins?).

Milk might also play a role in diabetes (Does Casein in Milk Trigger Type 1 Diabetes, Does Bovine Insulin in Milk Trigger Type 1 Diabetes?) and breast cancer (Is Bovine Leukemia in Milk Infectious?, The Role of Bovine Leukemia Virus in Breast Cancer, and Industry Response to Bovine Leukemia Virus in Breast Cancer).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Four Ways to Improve on the Mediterranean Diet

Improving on the Mediterranean Diet.jpg

The traditional Mediterranean diet can be considered mainly, but not exclusively, as a plant-based diet, and certainly not a whole foods, plant-based diet. Olive oil and wine can be considered essentially fruit juices. Even if one is eating a "vegiterranean diet," an entirely plant-based version, there are a number of problematic nutritional aspects that are rarely talked about. For example, the Mediterranean diet includes lots of white bread, white pasta and not a lot of whole grains.

In an anatomy of the health effects of the Mediterranean diet, the single most important component was the high consumption of plant foods. In contrast, high cereal consumption, meaning high grain consumption, did not appear to help. This may be because most grains that modern Mediterranean dieters eat are refined, like white bread, whereas the traditional Mediterranean diet was characterized by unprocessed cereals--in other words, whole grains. And while whole grains have been associated with lower risk of diabetes, heart disease and cancer, refined grain may increase the risk of diabetes, obesity, heart disease and other chronic diseases. In the PREDIMED study, those who ate the most white bread--but not whole grain bread--gained significant weight.

Alcohol may also be a problem. As a plant-centered diet, adherence to a Mediterranean diet is associated with lower cancer risk, but does not appear to lower breast cancer risk. With all the fruits, veggies, nuts, seeds, beans and low saturated fat content, you'd assume there would be lower breast cancer risk, but alcohol is a known breast carcinogen, even in moderate amounts. When researchers created a special adapted version of the Mediterranean diet score that excluded alcohol, the diet does indeed appear to reduce breast cancer risk.

The wonderful grape phytonutrients in red wine can improve our arterial function such that if you drink nonalcoholic red wine (wine with the alcohol removed), you get a significant boost in endothelial function--the ability of our arteries to relax and dilate normally, increasing blood flow. If you drink the same red wine with alcohol, it abolishes the beneficial effect and counteracts the benefit of the grape phytonutrients. So, it would be better just to eat grapes. You can find more information about this in my video Improving on the Mediterranean Diet.

Similarly, there are components of extra virgin olive oil--the antioxidant phytonutrients, that may help endothelial function, but when consumed as oil, (even extra virgin olive oil), it may impair arterial function. So even if white bread dipped in olive oil is the very symbol of the Mediterranean diet, we can modernize it by removing oils and refined grains.

Another important, albeit frequently ignored issue in the modern Mediterranean diet is sodium intake. Despite evidence linking salt intake to high blood pressure, heart disease and strokes, dietary salt intake in the U.S. is on the rise. Right now, Americans get about seven to ten grams a day, mostly from processed foods. If we were to decrease that just by three grams every year, we could possibly save tens of thousands of people from having a heart attack, prevent tens of thousands of strokes, and tens of thousands of deaths. There is a common misperception that only certain people should reduce their salt intake and that for the vast majority of the population, salt reduction is unnecessary, but in reality, the opposite is true.

There is much we can learn from the traditional Mediterranean diet. A defining characteristic of the Mediterranean diet is an abundance of plant foods, but one thing that seems to have fallen by the wayside. No main Mediterranean meal is replete without lots of greens, a key part of not only a good Mediterranean diet, but of any good diet.

Here are some of my previous videos on the Mediterranean diet:

I touch more on whole grains in How Many Meet the Simple Seven? and Whole Grains May Work As Well As Drugs.

More on breast cancer and alcohol in Breast Cancer and Alcohol: How Much Is Safe?, Preventing Skin Cancer From the Inside Out, and Breast Cancer Risk: Red Wine v. White Wine.

I've touched on olive oil in the other videos in this Mediterranean diet series, but also have an older video Extra Virgin Olive Oil vs. Nuts and more recently, Olive Oil & Artery Function.

More on sodium in Dietary Guidelines: With a Grain of Big Salt, Big Salt - Getting to the Meat of the Matter, and Can Diet Protect Against Kidney Cancer? But what if without salt everything tastes like cardboard? Not to worry! See Changing Our Taste Buds.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link