What Are the Benefits of Organic?

What Are the Benefits of Organic?.jpeg

The medical literature has been historically hostile to organic foods, blaming in part erroneous information supplied by the health food movement for our ignorance of nutrition. But until just a few generations ago, all food was organic. It's kind of ironic that what we now call conventional food really isn't very conventional for our species.

By eating organic we can reduce our exposure to pesticides, but it remains unclear whether such a reduction in exposure is clinically relevant. In my video, Are Organic Foods Safer?, I talked about some of the test tube studies comparing health-related properties of organic versus conventional foods. Organic produce was found to have higher antioxidant and antimutagenic activity combined with better inhibition of cancer cell proliferation, but in terms of studies on actual people rather than petri dishes, there isn't much science either way.

Why can't you just compare the health of those who buy organic to those who don't? Organic consumers do report being significantly healthier than conventional consumers, but they also tend to eat more plant foods in general and less soda and alcohol, processed meat, or milk, and just eat healthier in general. No wonder they feel so much better!

Therefore, there is an urgent need for interventional trials, or studies following cohorts of people eating organic over time like the Million Women Study in the UK, which was the first to examine the association between the consumption of organic food and subsequent risk of cancer. The only significant risk reduction they found, though, was for non-Hodgkin's lymphoma. This is consistent with data showing a higher risk of developing lymphoma in those who have higher levels of pesticides stored in their butt fat, a study undertaken because farmworkers have been found to have higher rates of lymphoma.

Parental farmworker exposure is also associated with a birth defect of the penis called hypospadias, and so researchers decided to see if moms who failed to choose organic were at increased risk. Indeed they found that frequent consumption of conventional high-fat dairy products was associated with about double the odds of the birth defect. This could just be because those that choose organic have other related healthy behaviors, or it could be that high-fat foods like dairy products bioamplify the fat-soluble toxins in our environment.

In my video, Are Organic Foods Healthier?, you can see two other general population pesticide studies that have raised concerns. One study found about a 50 to 70% increase in the odds of ADHD among children with pesticide levels in their urine, and another that found triple the odds of testicular cancer among men with higher levels of organochlorine pesticides in their blood. 90% of such pollutants come from fish, meat, and dairy, which may help explain rising testicular cancer rates in many western countries since World War II.

What about interventional trials? All we have in the medical literature so far are studies showing organically grown food provides health benefits to fruit flies raised on diets of conventional versus organic produce when subjected to a variety of tests designed to assess overall fly health. And what do you know--flies raised on diets made from organically grown produce lived longer. Hmm, insects eating insecticides don't do as well. Not exactly much of a breakthrough!


For how to best get pesticides off of conventional produce, see my video How to Make Your Own Fruit and Vegetable Wash.

Pesticides are one thing, but Are Organic Foods More Nutritious?

Overall, Are the Benefits of Organic Food Underrated or Overrated?

For more on the impact of food contaminants during pregnancy, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Food Safety Risk of Organic versus Conventional

The Food Safety Risk of Organic versus Conventional.jpeg

The stated principles of organic agriculture are "health, ecology, fairness, and care," but if you ask people why they buy organic, the strongest predictor is concern for their own health. People appear to spend more for organic foods for selfish reasons, rather than altruistic motives. Although organic foods may not have more nutrients per dollar (see my video Are Organic Foods More Nutritious?), consumption of organic foods may reduce exposure to pesticide residues and antibiotic-resistant bacteria.

Food safety-wise, researchers found no difference in the risk for contamination with food poisoning bacteria in general. Both organic and conventional animal products have been found to be commonly contaminated with Salmonella and Campylobacter, for example. Most chicken samples (organic and inorganic), were found to be contaminated with Campylobacter, and about a third with Salmonella, but the risk of exposure to multidrug-resistant bacteria was lower with the organic meat. They both may carry the same risk of making us sick, but food poisoning from organic meat may be easier for doctors to treat.

What about the pesticides? There is a large body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson's, Alzheimer's, and ALS, as well as birth defects and reproductive disorders--but these studies were largely on people who live or work around pesticides.

Take Salinas Valley California, for example, where they spray a half million pounds of the stuff. Daring to be pregnant in an agricultural community like that may impair childhood brain development, such that pregnant women with the highest levels running through their bodies (as measured in their urine) gave birth to children with an average deficit of about seven IQ points. Twenty-six out of 27 studies showed negative effects of pesticides on brain development in children. These included attention problems, developmental disorders, and short-term memory difficulties.

Even in urban areas, if you compare kids born with higher levels of a common insecticide in their umbilical cord blood, those who were exposed to higher levels are born with brain anomalies. And these were city kids, so presumably this was from residential pesticide use.

Using insecticides inside your house may also be a contributing risk factor for childhood leukemia. Pregnant farmworkers may be doubling the odds of their child getting leukemia and increase their risk of getting a brain tumor. This has lead to authorities advocating that awareness of the potentially negative health outcome for children be increased among populations occupationally exposed to pesticides, though I don't imagine most farmworkers have much of a choice.

Conventional produce may be bad for the pregnant women who pick them, but what about our own family when we eat them?

Just because we spray pesticides on our food in the fields doesn't necessarily mean it ends up in our bodies when we eat it, or at least we didn't know that until a study was published in 2006. Researchers measured the levels of two pesticides running through children's bodies by measuring specific pesticide breakdown products in their urine. In my video, Are Organic Foods Safer?, you can see the levels of pesticides flowing through the bodies of three to 11-year olds during a few days on a conventional diet. The kids then went on an organic diet for five days and then back to the conventional diet. As you can see, eating organic provides a dramatic and immediate protective effect against exposures to pesticides commonly used in agricultural production. The study was subsequently extended. It's clear by looking at the subsequent graph in the video when the kids were eating organic versus conventional. What about adults, though? We didn't know... until now.

Thirteen men and women consumed a diet of at least 80% organic or conventional food for seven days and then switched. No surprise, during the mostly organic week, pesticide exposure was significantly reduced by a nearly 90% drop.

If it can be concluded that consumption of organic foods provides protection against pesticides, does that also mean protection against disease? We don't know. The studies just haven't been done. Nevertheless, in the meantime, the consumption of organic food provides a logical precautionary approach.

For more on organic foods:

For more on the infectious disease implications of organic versus conventional, see Superbugs in Conventional vs. Organic Chicken. Organic produce may be safer too. See Norovirus Food Poisoning from Pesticides. Organic eggs may also have lower Salmonella risk, which is an egg-borne epidemic every year in the US. See my video Who Says Eggs Aren't Healthy or Safe?

More on Parkinson's and pesticides in Preventing Parkinson's Disease With Diet.

Those surprised by the California data might have missed my video California Children Are Contaminated.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: IFPRI -IMAGES / Flickr. This image has been modified.

Original Link

Organic versus Conventional: Which has More Nutrients?

Organic versus Conventional - Which has More Nutrients?.jpeg

Are organic foods safer and healthier than conventional alternatives? Those are two separate questions. Some consumers are interested in getting more nutrients; others are more concerned about getting fewer pesticides. Let's do nutrition first.

As seen in my video, Are Organic Foods More Nutritious?, hundreds of studies have been reviewed and researchers didn't find significant differences for most of the traditional nutrients like vitamins and minerals. They concluded that despite the widespread perception that organically produced foods are more nutritious, they didn't find robust evidence to support that perception. They did, however, find higher levels of phenolic phytonutrients in organic.

These so-called "secondary metabolites" of plants are thought to be behind many of the benefits ascribed to eating fruits and vegetables. Organic fruits and vegetables had between 19 and 69% more of a variety of these antioxidant compounds. The theory was that these phytonutrients are created by the plant for its own protection. For example, broccoli releases the bitter compounds like sulforaphane when the plant is chewed to ward off those who might eat it. Bugs take one bite and say, "Ew, this tastes like broccoli!" But pesticide-laden plants are bitten less by bugs and so may be churning out fewer of these compounds. Plants raised organically, on the other hand, are in a fight for their lives and may necessarily have to produce more protection. That was the theory anyway, but we don't have good evidence to back it up. The more likely reason has to do with the fertilizer; plants given high dose synthetic nitrogen fertilizers may divert more resources to growth rather than defense.

These antioxidants may protect the plant, but what about us? More antioxidant phytonutrients are found in organic vegetables and so yes, they displayed more antioxidant activity, but also more antimutagenic activity. Researchers exposed bacteria to a variety of mutagenic chemicals like benzopyrene, the polycyclic aromatic hydrocarbon found in barbecued meat, or IQ, the heterocyclic amine found in grilled/broiled/fried meats (as well as cigarette smoke), and there were fewer DNA mutations in the petri dishes where they added organic vegetables compared to the petri dishes where they added conventional vegetables.

Preventing DNA damage in bacteria is one thing, but what about effects on actual human cells? Organic strawberries may taste better, and have higher antioxidant activity and more phenolic phytonutrients, but what happens when you stack them up head-to-head against human cancer cells? Extracts from organically grown strawberries suppressed the growth of colon cancer cells and breast cancer cells significantly better than extracts from conventional strawberries. Now this was dripping strawberries onto cancer cells growing in a petri dish, but as I showed in Strawberries versus Esophageal Cancer, there are real life circumstances in which strawberries come into direct contact with cancerous and precancerous lesions, and so presumably organic strawberries would work even better, but they haven't yet been tested in clinical trials.

Although in vitro studies show higher antioxidant and antimutagenic activity as well as better inhibition of cancer cell proliferation, clinical studies on the impact of eating organic on human disease simply haven't been done. Based on antioxidant phytonutrient levels, organic produce may be considered 20 to 40% healthier, the equivalent of adding one or two serving's worth to a five-a-day regimen. But organic produce may be 40% more expensive, so for the same money you could just buy the extra servings worth of conventional produce. From a purely nutrients-per-dollar standpoint, it's not clear that organic foods are any better. But people often buy organic foods to avoid chemicals, not because they are more nutritious. For more on the best available science comparing the nutritional content, pesticide risk, heavy metal toxicity, and food poisoning risk of organic versus conventionally raised foods )including practical tips for making your own DIY fruit and veggie wash), see:

I imagine that the reaction to this series will be similar to that for the one I did on GMO foods, riling up critics on both sides of the debate:

More on the nutritional implications of stressed-out plants here:

Production method aside, in vitro, Which Fruit Fights Cancer Better?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Animal Protein Does in Your Colon

What Animal Protein Does in Your Colon.jpeg

There's a take-off of the industry slogan, "Beef: It's What's For Dinner" - "Beef: It's What's Rotting in Your Colon." I saw this on a shirt once with some friends and I was such the party pooper--no pun intended--explaining to everyone that meat is fully digested in the small intestine, and never makes it down into the colon. It's no fun hanging out with biology geeks.

But I was wrong!

It's been estimated that with a typical Western diet, up to 12 grams of protein can escape digestion, and when it reaches the colon, it can be turned into toxic substances like ammonia. This degradation of undigested protein in the colon is called putrefaction, so a little meat can actually end up putrefying in our colon. The problem is that some of the by-products of this putrefaction process can be toxic.

It's generally accepted that carbohydrate fermentation--the fiber and resistant starches that reach our colon--results in beneficial effects because of the generation of short-chain fatty acids like butyrate, whereas protein fermentation is considered detrimental. Protein fermentation mainly occurs in the lower end of colon and results in the production of potentially toxic metabolites. That may be why colorectal cancer and ulcerative colitis tends to happen lower down--because that's where the protein is putrefying.

Probably the simplest strategy to reduce the potential harm of protein fermentation is to reduce dietary protein intake. But the accumulation of these toxic byproducts of protein metabolism may be attenuated by the fermentation of undigested plant matter. In my video, Bowel Wars: Hydrogen Sulfide vs. Butyrate, you can see a study out of Australia showed that if you give people foods containing resistant starch you can block the accumulation of potentially harmful byproducts of protein metabolism. Resistant starch is resistant to small intestine digestion and so it makes it down to our colon where it can feed our good bacteria. Resistant starch is found in cooked beans, split peas, chickpeas, lentils, raw oatmeal, and cooled cooked pasta (like macaroni salad). Apparently, the more starch that ends up in the colon, the less ammonia that is produced.

Of course, there's protein in plants too. The difference is that animal proteins tend to have more sulfur-containing amino acids like methionine, which can be turned into hydrogen sulfide in our colon. Hydrogen sulfide is the rotten egg gas that may play a role in the development of the inflammatory bowel disease, ulcerative colitis (see Preventing Ulcerative Colitis with Diet).

The toxic effects of hydrogen sulfide appear to be a result of blocking the ability of the cells lining our colon from utilizing butyrate, which is what our good bacteria make from the fiber and resistant starch we eat. It's like this constant battle in our colon between the bad metabolites of protein, hydrogen sulfide, and the good metabolites of carbohydrates, butyrate. Using human colon samples, researchers were able to show that the adverse effects of sulfide could be reversed by butyrate. So we can either cut down on meat, eat more plants, or both.

There are two ways hydrogen sulfide can be produced, though. It's mainly present in our large intestine as a result of the breakdown of sulfur-containing proteins, but the rotten egg gas can also be generated from inorganic sulfur preservatives like sulfites and sulfur dioxide.

Sulfur dioxide is used as a preservative in dried fruit, and sulfites are added to wines. We can avoid sulfur additives by reading labels or by just choosing organic, since they're forbidden from organic fruits and beverages by law.

More than 35 years ago, studies started implicating sulfur dioxide preservatives in the exacerbation of asthma. This so-called "sulfite-sensitivity" seems to affect only about 1 in 2,000 people, so I recommended those with asthma avoid it, but otherwise I considered the preservative harmless. I am now not so sure, and advise people to avoid it when possible.

Cabbage family vegetables naturally have some sulfur compounds, but thankfully, after following more than a hundred thousand women for over 25 years, researchers concluded cruciferous vegetables were not associated with elevated colitis risk.

Because of animal protein and processed food intake, the standard American diet may contain five or six times more sulfur than a diet centered around unprocessed plant foods. This may help explain the rarity of inflammatory bowel disease among those eating traditional whole food, plant-based diets.

How could companies just add things like sulfur dioxide to foods without adequate safety testing? See Who Determines if Food Additives are Safe? For other additives that may be a problem, see Titanium Dioxide & Inflammatory Bowel Disease and Is Carrageenan Safe?

More on this epic fermentation battle in our gut in Stool pH and Colon Cancer.

Does the sulfur-containing amino acid methionine sound familiar? You may remember it from such hits as Starving Cancer with Methionine Restriction and Methionine Restriction as a Life Extension Strategy.

These short-chain fatty acids released by our good bacteria when we eat fiber and resistant starches are what may be behind the second meal effect: Beans and the Second Meal Effect.

I mentioned ulcerative colitis. What about the other inflammatory bowel disease Crohn's? See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Animal Protein Does in Your Colon

What Animal Protein Does in Your Colon.jpeg

There's a take-off of the industry slogan, "Beef: It's What's For Dinner" - "Beef: It's What's Rotting in Your Colon." I saw this on a shirt once with some friends and I was such the party pooper--no pun intended--explaining to everyone that meat is fully digested in the small intestine, and never makes it down into the colon. It's no fun hanging out with biology geeks.

But I was wrong!

It's been estimated that with a typical Western diet, up to 12 grams of protein can escape digestion, and when it reaches the colon, it can be turned into toxic substances like ammonia. This degradation of undigested protein in the colon is called putrefaction, so a little meat can actually end up putrefying in our colon. The problem is that some of the by-products of this putrefaction process can be toxic.

It's generally accepted that carbohydrate fermentation--the fiber and resistant starches that reach our colon--results in beneficial effects because of the generation of short-chain fatty acids like butyrate, whereas protein fermentation is considered detrimental. Protein fermentation mainly occurs in the lower end of colon and results in the production of potentially toxic metabolites. That may be why colorectal cancer and ulcerative colitis tends to happen lower down--because that's where the protein is putrefying.

Probably the simplest strategy to reduce the potential harm of protein fermentation is to reduce dietary protein intake. But the accumulation of these toxic byproducts of protein metabolism may be attenuated by the fermentation of undigested plant matter. In my video, Bowel Wars: Hydrogen Sulfide vs. Butyrate, you can see a study out of Australia showed that if you give people foods containing resistant starch you can block the accumulation of potentially harmful byproducts of protein metabolism. Resistant starch is resistant to small intestine digestion and so it makes it down to our colon where it can feed our good bacteria. Resistant starch is found in cooked beans, split peas, chickpeas, lentils, raw oatmeal, and cooled cooked pasta (like macaroni salad). Apparently, the more starch that ends up in the colon, the less ammonia that is produced.

Of course, there's protein in plants too. The difference is that animal proteins tend to have more sulfur-containing amino acids like methionine, which can be turned into hydrogen sulfide in our colon. Hydrogen sulfide is the rotten egg gas that may play a role in the development of the inflammatory bowel disease, ulcerative colitis (see Preventing Ulcerative Colitis with Diet).

The toxic effects of hydrogen sulfide appear to be a result of blocking the ability of the cells lining our colon from utilizing butyrate, which is what our good bacteria make from the fiber and resistant starch we eat. It's like this constant battle in our colon between the bad metabolites of protein, hydrogen sulfide, and the good metabolites of carbohydrates, butyrate. Using human colon samples, researchers were able to show that the adverse effects of sulfide could be reversed by butyrate. So we can either cut down on meat, eat more plants, or both.

There are two ways hydrogen sulfide can be produced, though. It's mainly present in our large intestine as a result of the breakdown of sulfur-containing proteins, but the rotten egg gas can also be generated from inorganic sulfur preservatives like sulfites and sulfur dioxide.

Sulfur dioxide is used as a preservative in dried fruit, and sulfites are added to wines. We can avoid sulfur additives by reading labels or by just choosing organic, since they're forbidden from organic fruits and beverages by law.

More than 35 years ago, studies started implicating sulfur dioxide preservatives in the exacerbation of asthma. This so-called "sulfite-sensitivity" seems to affect only about 1 in 2,000 people, so I recommended those with asthma avoid it, but otherwise I considered the preservative harmless. I am now not so sure, and advise people to avoid it when possible.

Cabbage family vegetables naturally have some sulfur compounds, but thankfully, after following more than a hundred thousand women for over 25 years, researchers concluded cruciferous vegetables were not associated with elevated colitis risk.

Because of animal protein and processed food intake, the standard American diet may contain five or six times more sulfur than a diet centered around unprocessed plant foods. This may help explain the rarity of inflammatory bowel disease among those eating traditional whole food, plant-based diets.

How could companies just add things like sulfur dioxide to foods without adequate safety testing? See Who Determines if Food Additives are Safe? For other additives that may be a problem, see Titanium Dioxide & Inflammatory Bowel Disease and Is Carrageenan Safe?

More on this epic fermentation battle in our gut in Stool pH and Colon Cancer.

Does the sulfur-containing amino acid methionine sound familiar? You may remember it from such hits as Starving Cancer with Methionine Restriction and Methionine Restriction as a Life Extension Strategy.

These short-chain fatty acids released by our good bacteria when we eat fiber and resistant starches are what may be behind the second meal effect: Beans and the Second Meal Effect.

I mentioned ulcerative colitis. What about the other inflammatory bowel disease Crohn's? See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Five Most Important Dietary Tweaks

The Five Most Important Dietary Tweaks.jpeg

Generally, adherence to healthy lifestyle patterns has decreased during the last 18 years. Obesity is up, exercise is down, and the number of people eating just five servings of fruits and veggies a day dropped like a rock. And we didn't start out that great to begin with.

Only 3% of Americans at the turn of the 21st century had the following four healthy lifestyle characteristics: not smoking, not overweight, five daily servings of fruits and vegetables, and exercising a half hour a day at least five days a week. Whether people were wealthy or college-educated didn't matter; no sub-group even remotely met clinical or public health recommendations.

Where are people falling down the most? You can see in my video What Percent of Americans Lead Healthy Lifestyles?. If you look at heart disease risk factors, for example, most people don't smoke and about half are exercising. But if we look at the healthy diet score-which is based on things like drinking less than four cups of soda a week-a scale of zero to five, only about 1% of Americans score a four or five. The American Heart Association's aggressive 2020 target to improve that by 20% would bring us up to 1.2%.

Since we've known for decades that advanced coronary artery disease may be present by age 20--with atherosclerosis often even present in young children--it is particularly disturbing that healthy lifestyle choices are declining rather than improving in the U.S.

In terms of life expectancy, the U.S. is down around 27 or 28 out of the 34 OECD free-market democracies. The people of Slovenia live a year longer than citizens of the United States. Why? According to the most rigorous analysis of risk factors ever published, the number one cause of death and disability in the United States is our diet.

It's the food.

According to the Global Burden of Disease study, the worst five things about our diet are: we don't eat enough fruit, we don't eat enough nuts and seeds, we eat too much salt, too much processed meat, and not enough vegetables.

Studies that have looked at diet quality and chronic disease mortality risk found that those scoring higher (e.g. more whole plant foods), reduced the risk of dying prematurely from heart disease, cancer, and all causes of death combined. There is now an overwhelming body of clinical and epidemiological evidence illustrating the dramatic impact of a healthy lifestyle on reducing all-cause mortality and preventing chronic diseases such as coronary heart disease, stroke, diabetes, and cancer.

Why do we eat so poorly? Aren't we scared of dying from these horrible chronic diseases? It's almost as if we're eating as though our future didn't matter. And there's actually data to back that up, from a study entitled Death Row Nutrition.

The growing macabre fascination with speculating about one's ''last meal'' offers a window into one's true consumption desires when one's value of the future is discounted close to zero. In contrast to pop culture anecdotes, a group of Cornell researchers created a catalog of actual last meals-the final food requests of 247 individuals executed in the United States during a recent five-year period. Meat was the most common request. The researchers go out of their way to note that tofu never made the list, and no one asked for a vegetarian meal. In fact, if you compare the last meals to what Americans normally eat, there's not much difference.

If we continue to eat as though they were our last meals, eventually, they will be.


A few years ago I did a video called Nation's Diet in Crisis. It's sad that it doesn't seem like much has changed. How Many Meet the Simple Seven? is another video in which you can see how your own habits stack up.

For more on fruits and veggies and living longer, see Fruits and Longevity: How Many Minutes per Mouthful? Surprised that nuts made the longevity list? See Nuts May Help Prevent Death. What about legumes? See Increased Lifespan from Beans.

The reason public health professionals are so keen on measuring lifestyle characteristics is because modest improvements may have extraordinary effects. See, for example:

Didn't know the beginnings of heart disease may already be present in children? See my video Heart Disease Starts in Childhood. Think that's tragic? Check out Heart Disease May Start in the Womb. Is it too late if we've been eating poorly most of our lives? It's Never Too Late to Start Eating Healthier.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Five Most Important Dietary Tweaks

The Five Most Important Dietary Tweaks.jpeg

Generally, adherence to healthy lifestyle patterns has decreased during the last 18 years. Obesity is up, exercise is down, and the number of people eating just five servings of fruits and veggies a day dropped like a rock. And we didn't start out that great to begin with.

Only 3% of Americans at the turn of the 21st century had the following four healthy lifestyle characteristics: not smoking, not overweight, five daily servings of fruits and vegetables, and exercising a half hour a day at least five days a week. Whether people were wealthy or college-educated didn't matter; no sub-group even remotely met clinical or public health recommendations.

Where are people falling down the most? You can see in my video What Percent of Americans Lead Healthy Lifestyles?. If you look at heart disease risk factors, for example, most people don't smoke and about half are exercising. But if we look at the healthy diet score-which is based on things like drinking less than four cups of soda a week-a scale of zero to five, only about 1% of Americans score a four or five. The American Heart Association's aggressive 2020 target to improve that by 20% would bring us up to 1.2%.

Since we've known for decades that advanced coronary artery disease may be present by age 20--with atherosclerosis often even present in young children--it is particularly disturbing that healthy lifestyle choices are declining rather than improving in the U.S.

In terms of life expectancy, the U.S. is down around 27 or 28 out of the 34 OECD free-market democracies. The people of Slovenia live a year longer than citizens of the United States. Why? According to the most rigorous analysis of risk factors ever published, the number one cause of death and disability in the United States is our diet.

It's the food.

According to the Global Burden of Disease study, the worst five things about our diet are: we don't eat enough fruit, we don't eat enough nuts and seeds, we eat too much salt, too much processed meat, and not enough vegetables.

Studies that have looked at diet quality and chronic disease mortality risk found that those scoring higher (e.g. more whole plant foods), reduced the risk of dying prematurely from heart disease, cancer, and all causes of death combined. There is now an overwhelming body of clinical and epidemiological evidence illustrating the dramatic impact of a healthy lifestyle on reducing all-cause mortality and preventing chronic diseases such as coronary heart disease, stroke, diabetes, and cancer.

Why do we eat so poorly? Aren't we scared of dying from these horrible chronic diseases? It's almost as if we're eating as though our future didn't matter. And there's actually data to back that up, from a study entitled Death Row Nutrition.

The growing macabre fascination with speculating about one's ''last meal'' offers a window into one's true consumption desires when one's value of the future is discounted close to zero. In contrast to pop culture anecdotes, a group of Cornell researchers created a catalog of actual last meals-the final food requests of 247 individuals executed in the United States during a recent five-year period. Meat was the most common request. The researchers go out of their way to note that tofu never made the list, and no one asked for a vegetarian meal. In fact, if you compare the last meals to what Americans normally eat, there's not much difference.

If we continue to eat as though they were our last meals, eventually, they will be.


A few years ago I did a video called Nation's Diet in Crisis. It's sad that it doesn't seem like much has changed. How Many Meet the Simple Seven? is another video in which you can see how your own habits stack up.

For more on fruits and veggies and living longer, see Fruits and Longevity: How Many Minutes per Mouthful? Surprised that nuts made the longevity list? See Nuts May Help Prevent Death. What about legumes? See Increased Lifespan from Beans.

The reason public health professionals are so keen on measuring lifestyle characteristics is because modest improvements may have extraordinary effects. See, for example:

Didn't know the beginnings of heart disease may already be present in children? See my video Heart Disease Starts in Childhood. Think that's tragic? Check out Heart Disease May Start in the Womb. Is it too late if we've been eating poorly most of our lives? It's Never Too Late to Start Eating Healthier.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

How Exactly Does Type 2 Diabetes Develop?

How Exactly Does Type 2 Diabetes Develop.jpeg

Insulin resistance is the cause of both prediabetes and type 2 diabetes. OkK, so what is the cause of insulin resistance? Insulin resistance is now accepted to be closely associated with the accumulation of fat within our muscle cells. This fat toxicity inside of our muscles is a major factor in the cause of insulin resistance and type 2 diabetes, as it interferes with the action of insulin. I've explored how fat makes our muscles insulin resistant (see What Causes Insulin Resistance?), how that fat can come from the fat we eat or the fat we wear (see The Spillover Effect Links Obesity to Diabetes), and how not all fats are the same (see Lipotoxicity: How Saturated Fat Raises Blood Sugar). It's the type of fat found predominantly in animal fats, relative to plant fats, that appears to be especially deleterious with respect to fat-induced insulin insensitivity. But this insulin resistance in our muscles starts years before diabetes is diagnosed.

In my video, Diabetes as a Disease of Fat Toxicity, you can see that insulin resistance starts over a decade before diabetes is actually diagnosed, as blood sugar levels slowly start creeping up. And then, all of the sudden, the pancreas conks out, and blood sugars skyrocket. What could underlie this relatively rapid failure of insulin secretion?

At first, the pancreas pumps out more and more insulin, trying to overcome the fat-induced insulin resistance in the muscles, and high insulin levels can lead to the accumulation of fat in the liver, called fatty liver disease. Before diagnosis of type 2 diabetes, there is a long silent scream from the liver. As fat builds up in our liver, it also becomes resistant to insulin.

Normally, the liver is constantly producing blood sugar to keep our brain alive between meals. As soon as we eat breakfast, though, the insulin released to deal with the meal normally turns off liver glucose production, which makes sense since we don't need it anymore. But when our liver is filled with fat, it becomes insulin resistant like our muscles, and doesn't respond to the breakfast signal; it keeps pumping out blood sugar all day long on top of whatever we eat. Then the pancreas pumps out even more insulin to deal with the high sugars, and our liver gets fatter and fatter. That's one of the twin vicious cycles of diabetes. Fatty muscles, in the context of too many calories, leads to a fatty liver, which leads to an even fattier liver. This is all still before we have diabetes.

Fatty liver can be deadly. The liver starts trying to offload the fat by dumping it back into the bloodstream in the form of something called VLDL, and that starts building up in the cells in the pancreas that produce the insulin in the first place. Now we know how diabetes develops: fatty muscles lead to a fatty liver, which leads to a fatty pancreas. It is now clear that type 2 diabetes is a condition of excess fat inside our organs, whether we're obese or not.

The only thing that was keeping us from diabetes-unchecked skyrocketing blood sugars-is that the pancreas was working overtime pumping out extra insulin to overcome insulin resistance. But as the so-called islet or Beta cells in the pancreas are killed off by the fatty buildup, insulin production starts to fail, and we're left with the worst of both worlds: insulin resistance combined with a failing pancreas. Unable to then overcome the resistance, blood sugar levels go up and up, and boom: type 2 diabetes.

This has implications for cancer as well. Obesity leads to insulin resistance and our blood sugars start to go up, so our pancreas starts pumping out more insulin to try to force more sugar into our muscles, and eventually the fat spills over into the pancreas, killing off the insulin-producing cells. Then we develop diabetes, in which case we may have to start injecting insulin at high levels to overcome the insulin-resistance, and these high insulin levels promote cancer. That's one of the reasons we think obese women get more breast cancer. It all traces back to fat getting into our muscle cells, causing insulin resistance: fat from our stomach (obesity) or fat going into our stomach (saturated fats in our diet).

Now it should make sense why the American Diabetes Association recommends reduced intake of dietary fat as a strategy for reducing the risk for developing diabetes.


The reason I'm going into all this detail is that I'm hoping to empower both those suffering from the disease and those treating sufferers so as to better understand dietary interventions to prevent and treat the epidemic.

Here are some videos on prevention:

And here are some on treatment:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nephron. This image has been modified.

Original Link

How Exactly Does Type 2 Diabetes Develop?

How Exactly Does Type 2 Diabetes Develop.jpeg

Insulin resistance is the cause of both prediabetes and type 2 diabetes. OkK, so what is the cause of insulin resistance? Insulin resistance is now accepted to be closely associated with the accumulation of fat within our muscle cells. This fat toxicity inside of our muscles is a major factor in the cause of insulin resistance and type 2 diabetes, as it interferes with the action of insulin. I've explored how fat makes our muscles insulin resistant (see What Causes Insulin Resistance?), how that fat can come from the fat we eat or the fat we wear (see The Spillover Effect Links Obesity to Diabetes), and how not all fats are the same (see Lipotoxicity: How Saturated Fat Raises Blood Sugar). It's the type of fat found predominantly in animal fats, relative to plant fats, that appears to be especially deleterious with respect to fat-induced insulin insensitivity. But this insulin resistance in our muscles starts years before diabetes is diagnosed.

In my video, Diabetes as a Disease of Fat Toxicity, you can see that insulin resistance starts over a decade before diabetes is actually diagnosed, as blood sugar levels slowly start creeping up. And then, all of the sudden, the pancreas conks out, and blood sugars skyrocket. What could underlie this relatively rapid failure of insulin secretion?

At first, the pancreas pumps out more and more insulin, trying to overcome the fat-induced insulin resistance in the muscles, and high insulin levels can lead to the accumulation of fat in the liver, called fatty liver disease. Before diagnosis of type 2 diabetes, there is a long silent scream from the liver. As fat builds up in our liver, it also becomes resistant to insulin.

Normally, the liver is constantly producing blood sugar to keep our brain alive between meals. As soon as we eat breakfast, though, the insulin released to deal with the meal normally turns off liver glucose production, which makes sense since we don't need it anymore. But when our liver is filled with fat, it becomes insulin resistant like our muscles, and doesn't respond to the breakfast signal; it keeps pumping out blood sugar all day long on top of whatever we eat. Then the pancreas pumps out even more insulin to deal with the high sugars, and our liver gets fatter and fatter. That's one of the twin vicious cycles of diabetes. Fatty muscles, in the context of too many calories, leads to a fatty liver, which leads to an even fattier liver. This is all still before we have diabetes.

Fatty liver can be deadly. The liver starts trying to offload the fat by dumping it back into the bloodstream in the form of something called VLDL, and that starts building up in the cells in the pancreas that produce the insulin in the first place. Now we know how diabetes develops: fatty muscles lead to a fatty liver, which leads to a fatty pancreas. It is now clear that type 2 diabetes is a condition of excess fat inside our organs, whether we're obese or not.

The only thing that was keeping us from diabetes-unchecked skyrocketing blood sugars-is that the pancreas was working overtime pumping out extra insulin to overcome insulin resistance. But as the so-called islet or Beta cells in the pancreas are killed off by the fatty buildup, insulin production starts to fail, and we're left with the worst of both worlds: insulin resistance combined with a failing pancreas. Unable to then overcome the resistance, blood sugar levels go up and up, and boom: type 2 diabetes.

This has implications for cancer as well. Obesity leads to insulin resistance and our blood sugars start to go up, so our pancreas starts pumping out more insulin to try to force more sugar into our muscles, and eventually the fat spills over into the pancreas, killing off the insulin-producing cells. Then we develop diabetes, in which case we may have to start injecting insulin at high levels to overcome the insulin-resistance, and these high insulin levels promote cancer. That's one of the reasons we think obese women get more breast cancer. It all traces back to fat getting into our muscle cells, causing insulin resistance: fat from our stomach (obesity) or fat going into our stomach (saturated fats in our diet).

Now it should make sense why the American Diabetes Association recommends reduced intake of dietary fat as a strategy for reducing the risk for developing diabetes.


The reason I'm going into all this detail is that I'm hoping to empower both those suffering from the disease and those treating sufferers so as to better understand dietary interventions to prevent and treat the epidemic.

Here are some videos on prevention:

And here are some on treatment:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nephron. This image has been modified.

Original Link

Can You Eat Too Much Fruit?

Can You Eat Too Much Fruit?.jpeg

In my video If Fructose is Bad, What About Fruit?, I explored how adding berries to our meals can actually blunt the detrimental effects of high glycemic foods, but how many berries? The purpose of one study out of Finland was to determine the minimum level of blueberry consumption at which a consumer may realistically expect to receive antioxidant benefits after eating blueberries with a sugary breakfast cereal. If we eat a bowl of corn flakes with no berries, within two hours, so many free radicals are created that it puts us into oxidative debt. The antioxidant power of our bloodstream drops below where we started from before breakfast, as the antioxidants in our bodies get used up dealing with such a crappy breakfast. As you can see in How Much Fruit is Too Much? video, a quarter cup of blueberries didn't seem to help much, but a half cup of blueberries did.

What about fruit for diabetics? Most guidelines recommend eating a diet with a high intake of fiber-rich food, including fruit, because they're so healthy--antioxidants, anti-inflammatory, improving artery function, and reducing cancer risk. However, some health professionals have concerns about the sugar content of fruit and therefore recommend restricting the fruit intake. So let's put it to the test! In a study from Denmark, diabetics were randomized into two groups: one told to eat at least two pieces of fruit a day, and the other told at most, two fruits a day. The reduce fruit group indeed reduce their fruit consumption, but it had no effect on the control of their diabetes or weight, and so, the researchers concluded, the intake of fruit should not be restricted in patients with type 2 diabetes. An emerging literature has shown that low-dose fructose may actually benefit blood sugar control. Having a piece of fruit with each meal would be expected to lower, not raise the blood sugar response.

The threshold for toxicity of fructose may be around 50 grams. The problem is that's the current average adult fructose consumption. So, the levels of half of all adults are likely above the threshold for fructose toxicity, and adolescents currently average 75. Is that limit for added sugars or for all fructose? If we don't want more than 50 and there's about ten in a piece of fruit, should we not eat more than five fruit a day? Quoting from the Harvard Health Letter, "the nutritional problems of fructose and sugar come when they are added to foods. Fruit, on the other hand, is beneficial in almost any amount." What do they mean almost? Can we eat ten fruit a day? How about twenty fruit a day?

It's actually been put to the test.

Seventeen people were made to eat 20 servings a day of fruit. Despite the extraordinarily high fructose content of this diet, presumably about 200 g/d--eight cans of soda worth, the investigators reported no adverse effects (and possible benefit actually) for body weight, blood pressure, and insulin and lipid levels after three to six months. More recently, Jenkins and colleagues put people on about a 20 servings of fruit a day diet for a few weeks and found no adverse effects on weight or blood pressure or triglycerides, and an astounding 38 point drop in LDL cholesterol.

There was one side effect, though. Given the 44 servings of vegetables they had on top of all that fruit, they recorded the largest bowl movements apparently ever documented in a dietary intervention.


Cutting down on sugary foods may be easier said than done (see Are Sugary Foods Addictive?) but it's worth it. For more on the dangers of high levels of fructose in added sugars, see How Much Added Sugar Is Too Much?.

What's that about being in oxidative debt? See my three part series on how to pull yourself out of the red:

Ironically, fat may be more of a problem when it comes to diabetes than sugar, see:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link