What a Single Fatty Meal Can Do to Our Arteries

Oct12 Fatty Meal copy.jpeg

The phenomenon of postprandial angina was described more than 200 years ago: chest pain that occurs after a meal, even if you're just sitting down and resting. This could be intuitively attributed to redistribution of blood flow away from the heart to the gut during digestion. However, such a mechanism could not be demonstrated experimentally.

The problem appears to be within the coronary arteries themselves. The clue came in 1955 when researchers found they could induce angina in people with heart disease just by having them drink fat. My video Fatty Meals May Impair Artery Function includes a fascinating graph of so-called lactescence, or milkiness, over time. It shows how their blood became increasingly milky with fat over the next five hours, and each of the ten attacks of angina was found to occur about four-and-a-half to five hours after the fatty meal, right when blood milkiness was at or near its peak. After a nonfat meal with the same bulk and calories, but made out of starch, sugar, and protein, no anginal pain was elicited in any of the patients.

To understand how the mere presence of fat in the blood can affect blood flow to the heart, we need to understand the endothelium, the inner lining of all of our blood vessels. Our arteries are not just rigid pipes; they are living, breathing organs that actively dilate or constrict, thinning or thickening the blood and releasing hormones, depending on what's needed. This is all controlled by the single inner layer, the endothelium, which makes it the body's largest endocrine (hormone-secreting) organ. When it's all gathered up, the endothelium weighs a total of three pounds and has a combined surface area of 700 square yards.

We used to think the endothelium was just an inert layer lining our vascular tree, but now we know better:

Researchers found that low-fat meals tend to improve endothelial function, whereas high-fat meals tend to worsen it. This goes for animal fat, as well as isolated plant fats, such as sunflower oil. But, maybe it's just the digestion of fat rather than the fat itself? Our body can detect the presence of fat in the digestive tract and release a special group of hormones and enzymes. Researchers tried feeding people fake fat and found that the real fat deprived the heart of blood while the fake fat didn't. Is our body really smart enough to tell the difference?

A follow-up study settled the issue. Researchers tried infusing fat directly into people's bloodstream through an IV to sneak it past your mouth and brain. Within hours, their arteries stiffened, significantly crippling their ability to relax and dilate normally. So it was the fat after all! This decrease in the ability to vasodilate coronary arteries after a fatty meal, just when you need it, could explain the phenomenon of after-meal angina in patients with known coronary artery disease.


This effect could certainly help explain the findings in Low Carb Diets and Coronary Blood Flow. My video Olive Oil and Artery Function addresses less refined fats like extra virgin olive oil,.

For more on angina, see the beginning of my 2014 annual talk--From Table to Able: Combating Disabling Diseases with Food--and How Not to Die from Heart Disease.

Another consequence of endothelial dysfunction is lack of blood flow to other organs. Check out Survival of the Firmest: Erectile Dysfunction and Death and Atkins Diet: Trouble Keeping It Up.

Fat in the bloodstream can also impair our ability to control blood sugar levels. Learn more with What Causes Insulin Resistance?, The Spillover Effect Links Obesity to Diabetes, and Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Finally, for more on how diet affects our arteries, check out Tea and Artery Function, Vinegar and Artery Function, and Plant-Based Diets and Artery Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

What a Single Fatty Meal Can Do to Our Arteries

Oct12 Fatty Meal copy.jpeg

The phenomenon of postprandial angina was described more than 200 years ago: chest pain that occurs after a meal, even if you're just sitting down and resting. This could be intuitively attributed to redistribution of blood flow away from the heart to the gut during digestion. However, such a mechanism could not be demonstrated experimentally.

The problem appears to be within the coronary arteries themselves. The clue came in 1955 when researchers found they could induce angina in people with heart disease just by having them drink fat. My video Fatty Meals May Impair Artery Function includes a fascinating graph of so-called lactescence, or milkiness, over time. It shows how their blood became increasingly milky with fat over the next five hours, and each of the ten attacks of angina was found to occur about four-and-a-half to five hours after the fatty meal, right when blood milkiness was at or near its peak. After a nonfat meal with the same bulk and calories, but made out of starch, sugar, and protein, no anginal pain was elicited in any of the patients.

To understand how the mere presence of fat in the blood can affect blood flow to the heart, we need to understand the endothelium, the inner lining of all of our blood vessels. Our arteries are not just rigid pipes; they are living, breathing organs that actively dilate or constrict, thinning or thickening the blood and releasing hormones, depending on what's needed. This is all controlled by the single inner layer, the endothelium, which makes it the body's largest endocrine (hormone-secreting) organ. When it's all gathered up, the endothelium weighs a total of three pounds and has a combined surface area of 700 square yards.

We used to think the endothelium was just an inert layer lining our vascular tree, but now we know better:

Researchers found that low-fat meals tend to improve endothelial function, whereas high-fat meals tend to worsen it. This goes for animal fat, as well as isolated plant fats, such as sunflower oil. But, maybe it's just the digestion of fat rather than the fat itself? Our body can detect the presence of fat in the digestive tract and release a special group of hormones and enzymes. Researchers tried feeding people fake fat and found that the real fat deprived the heart of blood while the fake fat didn't. Is our body really smart enough to tell the difference?

A follow-up study settled the issue. Researchers tried infusing fat directly into people's bloodstream through an IV to sneak it past your mouth and brain. Within hours, their arteries stiffened, significantly crippling their ability to relax and dilate normally. So it was the fat after all! This decrease in the ability to vasodilate coronary arteries after a fatty meal, just when you need it, could explain the phenomenon of after-meal angina in patients with known coronary artery disease.


This effect could certainly help explain the findings in Low Carb Diets and Coronary Blood Flow. My video Olive Oil and Artery Function addresses less refined fats like extra virgin olive oil,.

For more on angina, see the beginning of my 2014 annual talk--From Table to Able: Combating Disabling Diseases with Food--and How Not to Die from Heart Disease.

Another consequence of endothelial dysfunction is lack of blood flow to other organs. Check out Survival of the Firmest: Erectile Dysfunction and Death and Atkins Diet: Trouble Keeping It Up.

Fat in the bloodstream can also impair our ability to control blood sugar levels. Learn more with What Causes Insulin Resistance?, The Spillover Effect Links Obesity to Diabetes, and Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Finally, for more on how diet affects our arteries, check out Tea and Artery Function, Vinegar and Artery Function, and Plant-Based Diets and Artery Function.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Chocolate is Finally Put to the Test

Oct 10 Chocolate copy.jpeg

Botanically speaking, seeds are small embryonic plants--the whole plant stuffed into a tiny seed and surrounded by an outer layer packed with vitamins, minerals, and phytochemicals to protect the seedling plant's DNA from free radicals. No wonder they're so healthy. By seeds, using the formal definition, we're talking all whole grains; grains are seeds--you plant them and they grow. Nuts are just dry fruits with one or two seeds. Legumes (beans, peas, and lentils) are seeds, too, as are cocoa and coffee beans. So, finding health-promoting effects in something like cocoa or coffee should not be all that surprising. There is substantial evidence that increased consumption of all these little plants is associated with lower risk of cardiovascular disease.

Of course, much of chocolate research is just on how to get consumers to eat more. While it didn't seem to matter what kind of music people were listening to when it came to the flavor intensity, pleasantness, or texture of a bell pepper, people liked chocolate more when listening to jazz than classical, rock, or hip hop. Why is this important? So food industries can "integrate specific musical stimuli" in order to maximize their profits. For example, purveyors may play jazz in the background to increase consumers' acceptance of their chocolates. Along these lines, another study demonstrated that people rated the oyster eaten "more pleasant in the presence of the 'sound of the sea' than in the presence of 'farmyard noises.'"

You'd think chocolate would just sell itself, given that it's considered the most commonly craved food in the world. The same degree of interest doesn't seem to exist as to whether or not Brussels sprouts might provide similar cardiovascular protection. So, it's understandable to hope chocolate provides health benefits. Meanwhile, despite their known benefits, Brussels sprouts don't get the love they deserve.

One of the potential downsides of chocolate is weight gain, which is the subject of my Does Chocolate Cause Weight Gain? video. Though cocoa hardly has any calories, chocolate is one of the most calorie-dense foods. For example: A hundred calories of chocolate is less than a quarter of a bar, compared to a hundred calories of strawberries, which is more than two cups..

A few years ago, a study funded by the National Confectioners Association--an organization that, among other things, runs the website voteforcandy.com--reported that Americans who eat chocolate weigh, on average, four pounds less than those who don't. But maybe chocolate-eaters exercise more or eat more fruits and vegetables. The researchers didn't control for any of that.

The findings of a more recent study published in the Archives of Internal Medicine were less easy to dismiss and there were no apparent ties to Big Chocolate. The researchers reported that out of a thousand men and women they studied in San Diego, those who frequently consumed chocolate had a lower BMI--actually weighed less--than those who ate chocolate less often. And this was even after adjusting for physical activity and diet quality. But, it was a cross-sectional study, meaning a snapshot in time, so you can't prove cause and effect. Maybe not eating chocolate leads to being fatter, or maybe being fatter leads to not eating chocolate. Maybe people who are overweight are trying to cut down on sweets. What we need is a study in which people are followed over time.

There was no such prospective study, until now. More than 10,000 people were followed for six years, and a chocolate habit was associated with long-term weight gain in a dose-response manner. This means the greatest weight gain over time was seen in those with the highest frequency of chocolate intake. It appears the reason the cross-sectional studies found the opposite is that subjects diagnosed with obesity-related illnesses tended to reduce their intake of things like chocolate in an attempt to improve their prognosis. This explains why heavier people may, on average, eat less chocolate.

To bolster this finding came the strongest type of evidence--an interventional trial--in which you split people up into two groups and change half their diets. Indeed, adding four squares of chocolate to peoples' daily diets does appear to add a few pounds.

So, what do we tell our patients? In 2013, researchers wrote in the American Family Physician journal that "because many cocoa products are high in sugar and saturated fat, family physicians should refrain from recommending cocoa...." That's a little patronizing, though. You can get the benefits of chocolate without any sugar or fat by adding cocoa powder to a smoothie, for example. Too often, doctors think patients can't handle the truth. Case in point: If your patients inquire, one medical journal editorial suggest, ask them what type of chocolate they prefer. If they respond with milk chocolate, then it is best to answer that it is not good for them. If the answer is dark chocolate, then you can lay out the evidence.


Even better than dark chocolate would be cocoa powder, which contains the phytonutrients without the saturated fat. I've happily (and deliciously) created other videos on cocoa and chocolate, so check out Update on Chocolate, Healthiest Chocolate Fix, A Treatment for Chronic Fatigue Syndrome, and Dark Chocolate and Artery Function.

Whether with Big Candy, Big Chocolate, or some other player, you always have to be careful about conflict of interest. For more information, watch my Food Industry Funded Research Bias video.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Chocolate is Finally Put to the Test

Oct 10 Chocolate copy.jpeg

Botanically speaking, seeds are small embryonic plants--the whole plant stuffed into a tiny seed and surrounded by an outer layer packed with vitamins, minerals, and phytochemicals to protect the seedling plant's DNA from free radicals. No wonder they're so healthy. By seeds, using the formal definition, we're talking all whole grains; grains are seeds--you plant them and they grow. Nuts are just dry fruits with one or two seeds. Legumes (beans, peas, and lentils) are seeds, too, as are cocoa and coffee beans. So, finding health-promoting effects in something like cocoa or coffee should not be all that surprising. There is substantial evidence that increased consumption of all these little plants is associated with lower risk of cardiovascular disease.

Of course, much of chocolate research is just on how to get consumers to eat more. While it didn't seem to matter what kind of music people were listening to when it came to the flavor intensity, pleasantness, or texture of a bell pepper, people liked chocolate more when listening to jazz than classical, rock, or hip hop. Why is this important? So food industries can "integrate specific musical stimuli" in order to maximize their profits. For example, purveyors may play jazz in the background to increase consumers' acceptance of their chocolates. Along these lines, another study demonstrated that people rated the oyster eaten "more pleasant in the presence of the 'sound of the sea' than in the presence of 'farmyard noises.'"

You'd think chocolate would just sell itself, given that it's considered the most commonly craved food in the world. The same degree of interest doesn't seem to exist as to whether or not Brussels sprouts might provide similar cardiovascular protection. So, it's understandable to hope chocolate provides health benefits. Meanwhile, despite their known benefits, Brussels sprouts don't get the love they deserve.

One of the potential downsides of chocolate is weight gain, which is the subject of my Does Chocolate Cause Weight Gain? video. Though cocoa hardly has any calories, chocolate is one of the most calorie-dense foods. For example: A hundred calories of chocolate is less than a quarter of a bar, compared to a hundred calories of strawberries, which is more than two cups..

A few years ago, a study funded by the National Confectioners Association--an organization that, among other things, runs the website voteforcandy.com--reported that Americans who eat chocolate weigh, on average, four pounds less than those who don't. But maybe chocolate-eaters exercise more or eat more fruits and vegetables. The researchers didn't control for any of that.

The findings of a more recent study published in the Archives of Internal Medicine were less easy to dismiss and there were no apparent ties to Big Chocolate. The researchers reported that out of a thousand men and women they studied in San Diego, those who frequently consumed chocolate had a lower BMI--actually weighed less--than those who ate chocolate less often. And this was even after adjusting for physical activity and diet quality. But, it was a cross-sectional study, meaning a snapshot in time, so you can't prove cause and effect. Maybe not eating chocolate leads to being fatter, or maybe being fatter leads to not eating chocolate. Maybe people who are overweight are trying to cut down on sweets. What we need is a study in which people are followed over time.

There was no such prospective study, until now. More than 10,000 people were followed for six years, and a chocolate habit was associated with long-term weight gain in a dose-response manner. This means the greatest weight gain over time was seen in those with the highest frequency of chocolate intake. It appears the reason the cross-sectional studies found the opposite is that subjects diagnosed with obesity-related illnesses tended to reduce their intake of things like chocolate in an attempt to improve their prognosis. This explains why heavier people may, on average, eat less chocolate.

To bolster this finding came the strongest type of evidence--an interventional trial--in which you split people up into two groups and change half their diets. Indeed, adding four squares of chocolate to peoples' daily diets does appear to add a few pounds.

So, what do we tell our patients? In 2013, researchers wrote in the American Family Physician journal that "because many cocoa products are high in sugar and saturated fat, family physicians should refrain from recommending cocoa...." That's a little patronizing, though. You can get the benefits of chocolate without any sugar or fat by adding cocoa powder to a smoothie, for example. Too often, doctors think patients can't handle the truth. Case in point: If your patients inquire, one medical journal editorial suggest, ask them what type of chocolate they prefer. If they respond with milk chocolate, then it is best to answer that it is not good for them. If the answer is dark chocolate, then you can lay out the evidence.


Even better than dark chocolate would be cocoa powder, which contains the phytonutrients without the saturated fat. I've happily (and deliciously) created other videos on cocoa and chocolate, so check out Update on Chocolate, Healthiest Chocolate Fix, A Treatment for Chronic Fatigue Syndrome, and Dark Chocolate and Artery Function.

Whether with Big Candy, Big Chocolate, or some other player, you always have to be careful about conflict of interest. For more information, watch my Food Industry Funded Research Bias video.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Choosing to Have a Normal Blood Pressure

Oct 5 Blood Pressure copy.jpeg

For the first 90% of our evolution, humans ate diets containing less than a quarter teaspoon of salt a day. Why? Because we ate mostly plants. Since we went millions of years without salt shakers, our bodies evolved into salt-conserving machines, which served us well until we discovered salt could be used to preserve foods. Without refrigeration, this was a big boon to human civilization. Of course, this may have led to a general rise in blood pressure, but does that matter if the alternative is starving to death since all your food rotted away? But where does that leave us now, when we no longer have to live off pickles and jerky? We are genetically programmed to eat ten times less salt than we do now. Even many "low"-salt diets can be considered high-salt diets. That's why it's critical to understand what the concept of "normal" is when it comes to salt.

As I discuss in my video High Blood Pressure May Be a Choice, having a "normal" salt intake can lead to a "normal" blood pressure, which can help us to die from all the "normal" causes, like heart attacks and strokes.

Doctors used to be taught that a "normal" systolic blood pressure (the top number) is approximately 100 plus age. Babies start out with a blood pressure around 95 over 60, but then as we age that 95 can go to 120 by our 20s, then 140 in our 40s, and keep climbing as we age. (140 is the official cut-off above which one technically has high blood pressure.) That was considered normal, since everyone's blood pressure creeps up as we get older. And if that's normal, then heart attacks and strokes are normal too, since risk starts rising once we start getting above the 100 we had as a baby.

If blood pressures over 100 are associated with disease, maybe they should be considered abnormal. Were these elevated blood pressures caused by our abnormally high salt intake--ten times more than what our bodies were designed to handle? Maybe if we ate a natural amount of salt, our blood pressures would not go up with age and we'd be protected. Of course, to test that theory you'd have to find a population in modern times that doesn't use salt, eat processed food, or go out to eat. For that, you'd have to go deep into the Amazon rainforest.

Meet the Yanomamo people, a no-salt culture with the lowest salt intake ever reported. That is, they have a totally normal-for-our-species salt intake. So, what happens to their blood pressure on a no- or low-salt diet as they age? They start out with a blood pressure of about 100 over 60 and end up with a blood pressure of about 100 over 60. Though theirs is described as a salt-deficient diet, that's like saying they have a diet deficient in Twinkies. They're the ones, it seems, who are eating truly normal salt intakes, which leads to truly normal blood pressures. Those in their 50s have the blood pressure of a 20-year-old. What was the percentage of the population tested with high blood pressure? Zero. However, elsewhere in Brazil, up to 38% of the population may be affected. The Yanomamos probably represent the ultimate human example of the importance of salt on blood pressure.

Of course, there could have been other factors. They didn't drink alcohol, ate a high-fiber and plant-based diet, got lots of exercise, and had no obesity. There are a number of plant-based populations eating little salt who experience no rise of blood pressure with age, but how do we know what exactly is to blame? Ideally, we'd do an interventional trial. Imagine if we took people literally dying from out-of-control high blood pressure (so called malignant hypertension) where you go blind from bleeding into your eyes, your kidneys shut down, and your heart fails, and then we withhold from these patients blood pressure medications so their fate is certain death. Then, what if we put them on a Yanomamo level of salt intake--that is, a normal-for-the-human-species salt intake--and, if instead of dying, they walked away cured of their hypertension? That would pretty much seal the deal.

Enter Dr. Walter Kempner and his rice and fruit diet. Patients started with blood pressures of 210 over 140, which dropped down to 80 over 60. Amazing stuff, but how could he ethically withhold all modern blood pressure medications and treat with diet alone? This was back in the 1940s, and the drugs hadn't been invented yet.

His diet wasn't just extremely low salt, though; it was also strictly plant-based and extremely low in fat, protein, and calories. There is no doubt that Kempner's rice diet achieved remarkable results, and Kempner is now remembered as the person who demonstrated, beyond any shadow of doubt, that high blood pressure can often be lowered by a low enough salt diet.

Forty years ago, it was acknowledged that the evidence is very good, if not conclusive, that a low enough reduction of salt in the diet would result in the prevention of essential hypertension (the rising of blood pressure as we age) and its disappearance as a major public health problem. It looks like we knew how to stop this four decades ago. During this time, how many people have died? Today, high blood pressure may kill 400,000 Americans every year--causing a thousand unnecessary deaths every day.


I have a whole series of videos on salt, including Sprinkling Doubt: Taking Sodium Skeptics with a Pinch of Salt, The Evidence That Salt Raises Blood Pressure, Shaking the Salt Habit and Sodium & Autoimmune Disease: Rubbing Salt in the Wound.

Canned foods are infamous for their sodium content, but there are no-salt varieties. Learn more with my video Canned Beans or Cooked Beans?. Cutting down on sodium is one of the ways we could be Improving on the Mediterranean Diet. Beyond heart health, reducing salt intake could also help our kidneys (How to Treat Kidney Stones with Diet) but if you cut down on salt, won't everything taste like cardboard? See Changing Our Taste Buds.

For more on hypertension, see How to Prevent High Blood Pressure with Diet, How to Treat High Blood Pressure with Diet, and How Not to Die from High Blood Pressure. What if you already eat healthfully and still can't get your pressures down? Try adding hibiscus tea (Hibiscus Tea vs. Plant-Based Diets for Hypertension) and ground flaxseeds (Flax Seeds for Hypertension) to your diet, and, of course, make sure you're exercising regularly (Longer Life Within Walking Distance).

Dr. Kempner and his rice diet are so fascinating they warrant an entire video series. Check out Kempner Rice Diet: Whipping Us Into Shape, Drugs and the Demise of the Rice Diet, Can Diabetic Retinopathy Be Reversed?, and Can Morbid Obesity be Reversed Through Diet?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Choosing to Have a Normal Blood Pressure

Oct 5 Blood Pressure copy.jpeg

For the first 90% of our evolution, humans ate diets containing less than a quarter teaspoon of salt a day. Why? Because we ate mostly plants. Since we went millions of years without salt shakers, our bodies evolved into salt-conserving machines, which served us well until we discovered salt could be used to preserve foods. Without refrigeration, this was a big boon to human civilization. Of course, this may have led to a general rise in blood pressure, but does that matter if the alternative is starving to death since all your food rotted away? But where does that leave us now, when we no longer have to live off pickles and jerky? We are genetically programmed to eat ten times less salt than we do now. Even many "low"-salt diets can be considered high-salt diets. That's why it's critical to understand what the concept of "normal" is when it comes to salt.

As I discuss in my video High Blood Pressure May Be a Choice, having a "normal" salt intake can lead to a "normal" blood pressure, which can help us to die from all the "normal" causes, like heart attacks and strokes.

Doctors used to be taught that a "normal" systolic blood pressure (the top number) is approximately 100 plus age. Babies start out with a blood pressure around 95 over 60, but then as we age that 95 can go to 120 by our 20s, then 140 in our 40s, and keep climbing as we age. (140 is the official cut-off above which one technically has high blood pressure.) That was considered normal, since everyone's blood pressure creeps up as we get older. And if that's normal, then heart attacks and strokes are normal too, since risk starts rising once we start getting above the 100 we had as a baby.

If blood pressures over 100 are associated with disease, maybe they should be considered abnormal. Were these elevated blood pressures caused by our abnormally high salt intake--ten times more than what our bodies were designed to handle? Maybe if we ate a natural amount of salt, our blood pressures would not go up with age and we'd be protected. Of course, to test that theory you'd have to find a population in modern times that doesn't use salt, eat processed food, or go out to eat. For that, you'd have to go deep into the Amazon rainforest.

Meet the Yanomamo people, a no-salt culture with the lowest salt intake ever reported. That is, they have a totally normal-for-our-species salt intake. So, what happens to their blood pressure on a no- or low-salt diet as they age? They start out with a blood pressure of about 100 over 60 and end up with a blood pressure of about 100 over 60. Though theirs is described as a salt-deficient diet, that's like saying they have a diet deficient in Twinkies. They're the ones, it seems, who are eating truly normal salt intakes, which leads to truly normal blood pressures. Those in their 50s have the blood pressure of a 20-year-old. What was the percentage of the population tested with high blood pressure? Zero. However, elsewhere in Brazil, up to 38% of the population may be affected. The Yanomamos probably represent the ultimate human example of the importance of salt on blood pressure.

Of course, there could have been other factors. They didn't drink alcohol, ate a high-fiber and plant-based diet, got lots of exercise, and had no obesity. There are a number of plant-based populations eating little salt who experience no rise of blood pressure with age, but how do we know what exactly is to blame? Ideally, we'd do an interventional trial. Imagine if we took people literally dying from out-of-control high blood pressure (so called malignant hypertension) where you go blind from bleeding into your eyes, your kidneys shut down, and your heart fails, and then we withhold from these patients blood pressure medications so their fate is certain death. Then, what if we put them on a Yanomamo level of salt intake--that is, a normal-for-the-human-species salt intake--and, if instead of dying, they walked away cured of their hypertension? That would pretty much seal the deal.

Enter Dr. Walter Kempner and his rice and fruit diet. Patients started with blood pressures of 210 over 140, which dropped down to 80 over 60. Amazing stuff, but how could he ethically withhold all modern blood pressure medications and treat with diet alone? This was back in the 1940s, and the drugs hadn't been invented yet.

His diet wasn't just extremely low salt, though; it was also strictly plant-based and extremely low in fat, protein, and calories. There is no doubt that Kempner's rice diet achieved remarkable results, and Kempner is now remembered as the person who demonstrated, beyond any shadow of doubt, that high blood pressure can often be lowered by a low enough salt diet.

Forty years ago, it was acknowledged that the evidence is very good, if not conclusive, that a low enough reduction of salt in the diet would result in the prevention of essential hypertension (the rising of blood pressure as we age) and its disappearance as a major public health problem. It looks like we knew how to stop this four decades ago. During this time, how many people have died? Today, high blood pressure may kill 400,000 Americans every year--causing a thousand unnecessary deaths every day.


I have a whole series of videos on salt, including Sprinkling Doubt: Taking Sodium Skeptics with a Pinch of Salt, The Evidence That Salt Raises Blood Pressure, Shaking the Salt Habit and Sodium & Autoimmune Disease: Rubbing Salt in the Wound.

Canned foods are infamous for their sodium content, but there are no-salt varieties. Learn more with my video Canned Beans or Cooked Beans?. Cutting down on sodium is one of the ways we could be Improving on the Mediterranean Diet. Beyond heart health, reducing salt intake could also help our kidneys (How to Treat Kidney Stones with Diet) but if you cut down on salt, won't everything taste like cardboard? See Changing Our Taste Buds.

For more on hypertension, see How to Prevent High Blood Pressure with Diet, How to Treat High Blood Pressure with Diet, and How Not to Die from High Blood Pressure. What if you already eat healthfully and still can't get your pressures down? Try adding hibiscus tea (Hibiscus Tea vs. Plant-Based Diets for Hypertension) and ground flaxseeds (Flax Seeds for Hypertension) to your diet, and, of course, make sure you're exercising regularly (Longer Life Within Walking Distance).

Dr. Kempner and his rice diet are so fascinating they warrant an entire video series. Check out Kempner Rice Diet: Whipping Us Into Shape, Drugs and the Demise of the Rice Diet, Can Diabetic Retinopathy Be Reversed?, and Can Morbid Obesity be Reversed Through Diet?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Boosting Brown Fat Through Diet

Sept 26 Boosting Brown Fat copy.jpeg

Until about ten years ago, brown adipose tissue (BAT) was considered to be biologically active only in babies and small children where it generates heat by burning fat. But now, there is no doubt that active brown fat is present in adult humans and is involved in cold-induced increases in whole-body calorie expenditure and, thereby, helps control of not only body temperature but also how fat we are.

In 2013, researchers showed that one could activate brown adipose tissue if you chill out people long enough, specifically, by exposing them to two hours of cold every day for six weeks, which can lead to a significant reduction in body fat. You can see an illustrative graph in my video Boosting Brown Fat Through Diet. Although researchers demonstrated the effective recruitment of human brown fat, it would seem difficult to increase exposure to cold in daily life. Thankfully, our brown fat can also be activated by some food ingredients, such as capsaicin, the compound that makes hot peppers hot.

While physical activity is usually recommended to increase energy expenditure, there are specific food components, such as capsaicin, that are known to burn off calories. For example, one study found that there was a significant rise in energy expenditure within 30 minutes of eating the equivalent of a jalapeño pepper.

Normally when we cut down on calories, our metabolism slows down, undercutting our weight loss attempts; but sprinkling a third of a teaspoon of red chili pepper powder onto our meals counteracts that metabolic slow down and promotes fat burning. Researchers wanted to try giving participants more chili pepper in order to try to match some of the studies done in Asia, but the Caucasian subjects couldn't take it. But by adding more than a tablespoon of red pepper powder to a high-fat meal, Japanese women burned significantly more fat.

We've known for decades that cayenne pepper increases metabolic rate, but we didn't know how. But studies show that this class of compounds increases energy expenditure in human individuals with brown fat, but not in those without it, indicating that individuals increase expenditure right off the BAT. Additionally, there is a variety of structurally similar flavor molecules in other foods, like black pepper and ginger, that may activate thermogenesis as well, but they haven't been directly tested.

All these results suggest that the anti-obesity effects of pepper compounds are based on the heat-generating activity of recruited brown fat. Thus, repeated ingestion can mimic the chronic effects of cold exposure without having to freeze ourselves.

Consumption of spicy foods may help us lose weight, but what about the sensory burn and pain on our tongues and sometimes in our stomachs as well as further on down? Are our only two options for boosting brown fat to freeze our legs or burn our butts?

Arginine-rich foods may also stimulate brown adipose tissue growth and development through a variety of mechanisms, which is achieved by consuming more soy foods, seeds, nuts, and beans.


For more on brown adipose tissue, see Brown Fat: Losing Weight Through Thermogenesis.

What about arginine? Check out Fat Burning Via Arginine. And, did you know arginine may also play a role in the effects nuts may have on penile blood flow? I discuss this in Pistachio Nuts for Erectile Dysfunction.

For more on spicy foods, see my videos Cayenne Pepper for Irritable Bowel Syndrome and Chronic Indigestion to learn how digestive disorders may be helped and Hot Sauce in the Nose for Cluster Headaches? for information on how the hot pepper compound can be a lifesaver for people suffering from "suicide" headaches.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Boosting Brown Fat Through Diet

Sept 26 Boosting Brown Fat copy.jpeg

Until about ten years ago, brown adipose tissue (BAT) was considered to be biologically active only in babies and small children where it generates heat by burning fat. But now, there is no doubt that active brown fat is present in adult humans and is involved in cold-induced increases in whole-body calorie expenditure and, thereby, helps control of not only body temperature but also how fat we are.

In 2013, researchers showed that one could activate brown adipose tissue if you chill out people long enough, specifically, by exposing them to two hours of cold every day for six weeks, which can lead to a significant reduction in body fat. You can see an illustrative graph in my video Boosting Brown Fat Through Diet. Although researchers demonstrated the effective recruitment of human brown fat, it would seem difficult to increase exposure to cold in daily life. Thankfully, our brown fat can also be activated by some food ingredients, such as capsaicin, the compound that makes hot peppers hot.

While physical activity is usually recommended to increase energy expenditure, there are specific food components, such as capsaicin, that are known to burn off calories. For example, one study found that there was a significant rise in energy expenditure within 30 minutes of eating the equivalent of a jalapeño pepper.

Normally when we cut down on calories, our metabolism slows down, undercutting our weight loss attempts; but sprinkling a third of a teaspoon of red chili pepper powder onto our meals counteracts that metabolic slow down and promotes fat burning. Researchers wanted to try giving participants more chili pepper in order to try to match some of the studies done in Asia, but the Caucasian subjects couldn't take it. But by adding more than a tablespoon of red pepper powder to a high-fat meal, Japanese women burned significantly more fat.

We've known for decades that cayenne pepper increases metabolic rate, but we didn't know how. But studies show that this class of compounds increases energy expenditure in human individuals with brown fat, but not in those without it, indicating that individuals increase expenditure right off the BAT. Additionally, there is a variety of structurally similar flavor molecules in other foods, like black pepper and ginger, that may activate thermogenesis as well, but they haven't been directly tested.

All these results suggest that the anti-obesity effects of pepper compounds are based on the heat-generating activity of recruited brown fat. Thus, repeated ingestion can mimic the chronic effects of cold exposure without having to freeze ourselves.

Consumption of spicy foods may help us lose weight, but what about the sensory burn and pain on our tongues and sometimes in our stomachs as well as further on down? Are our only two options for boosting brown fat to freeze our legs or burn our butts?

Arginine-rich foods may also stimulate brown adipose tissue growth and development through a variety of mechanisms, which is achieved by consuming more soy foods, seeds, nuts, and beans.


For more on brown adipose tissue, see Brown Fat: Losing Weight Through Thermogenesis.

What about arginine? Check out Fat Burning Via Arginine. And, did you know arginine may also play a role in the effects nuts may have on penile blood flow? I discuss this in Pistachio Nuts for Erectile Dysfunction.

For more on spicy foods, see my videos Cayenne Pepper for Irritable Bowel Syndrome and Chronic Indigestion to learn how digestive disorders may be helped and Hot Sauce in the Nose for Cluster Headaches? for information on how the hot pepper compound can be a lifesaver for people suffering from "suicide" headaches.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Brown Fat: Losing Weight Through Thermogenesis

Sept 21 Brown Fat Thermo copy.jpeg

During World War I, it was discovered that many of the chemicals for new explosives had toxic or even lethal effects on the workers in the munitions factories. Chemicals such as di-nitro-phenol (DNP) can boost metabolism so much that workers were too often found wandering along the road after work, covered in sweat with temperatures of 106 to 109 degrees Fahrenheit before they died. Even after death, their temperatures kept going up, as if they were having a total body meltdown. At subacute doses, however, workers claimed to have grown thin to a notable extent after several months working with the chemical.

That got some Stanford pharmacologists excited about the "promising metabolic applications" of DNP. Our resting metabolic rate jumps up 30% after one dose of DNP, and therefore, it becomes an actual fat-burning drug. People started losing weight, as you can see in my video Brown Fat: Losing Weight Through Thermogenesis, with no apparent side effects. They felt great... and then thousands of people started going blind and users started dropping dead from hyperpyrexia, fatal fever due to the heat created by the burning fat. Of course, it continued to be sold. Ad copy read:

"Here, at last, is a [weight] reducing remedy that will bring you a figure men admire and women envy, without danger to your health or change in your regular mode of living....No diet, no exercise!"

It did work, but the therapeutic index--the difference between the effective dose and the deadly dose--was razor thin. It was not until thousands suffered irreversible harm that it got pulled from the market and remained unavailable. Unavailable, that is, until it was brought back by the internet for those dying to be thin.

There is, however, a way our body naturally burns fat to create heat. When we're born, we go from a nice tropical 98.6 in our mother's womb straight to room temperature, just when we're still all wet and slimy. As an adaptive mechanism to maintain warmth, the appearance of a unique organ around 150 million years ago allowed mammals to maintain our high body temperatures.

That unique organ is called brown adipose tissue, or BAT, and its role is to consume fat calories by generating heat in response to cold exposure. The white fat in our bellies stores fat, but the brown fat, located up between our shoulder blades, burns fat. BAT is essential for thermogenesis, the creation of heat in newborns, but has been considered unnecessary in adults who have higher metabolic rates and increased muscle mass for shivering to warm us up when we get chilled. We used to think brown tissue just shrank away when we grew up, but, if it was there, then it could potentially make a big difference for how many calories we burn every day.

When PET scans were invented to detect metabolically active tissues like cancer, oncologists kept finding hot spots in the neck and shoulder regions that on CT scans turned out not to be cancer, just fat. Then, some observant radiologists noticed they appeared in patients mostly during the cold winter months. When they looked closer at tissue samples taken from people who had undergone neck surgery, they found it: brown fat in adults.

The common message from a number of studies is that BAT is present and active in adults, and the more we have and the more active it is, the thinner we are. And we can rapidly activate our fat-burning brown fat by exposure to cold temperatures. For example, if you hang out in a cold room for two hours in your undies and put your legs on a block of ice for four minutes every five minutes, you can elicit a marked increase in energy expenditure, thanks to brown fat activation. So, the studies point to a potential "natural" intervention to stimulate energy expenditure: Turn down the heat to burn calories (and reduce the carbon footprint in the process).

Thankfully, for those of us who would rather not lay our bare legs on blocks of ice, our brown fat can also be activated by some food ingredients such as those that are covered in my Boosting Brown Fat Through Diet video.


I briefly touch on the role cold temperatures can play in weight loss in The Ice Diet and talk more about calories in (Nutrient-Dense Approach to Weight Management) and calories out (How Much Exercise to Sustain Weight Loss).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Brown Fat: Losing Weight Through Thermogenesis

Sept 21 Brown Fat Thermo copy.jpeg

During World War I, it was discovered that many of the chemicals for new explosives had toxic or even lethal effects on the workers in the munitions factories. Chemicals such as di-nitro-phenol (DNP) can boost metabolism so much that workers were too often found wandering along the road after work, covered in sweat with temperatures of 106 to 109 degrees Fahrenheit before they died. Even after death, their temperatures kept going up, as if they were having a total body meltdown. At subacute doses, however, workers claimed to have grown thin to a notable extent after several months working with the chemical.

That got some Stanford pharmacologists excited about the "promising metabolic applications" of DNP. Our resting metabolic rate jumps up 30% after one dose of DNP, and therefore, it becomes an actual fat-burning drug. People started losing weight, as you can see in my video Brown Fat: Losing Weight Through Thermogenesis, with no apparent side effects. They felt great... and then thousands of people started going blind and users started dropping dead from hyperpyrexia, fatal fever due to the heat created by the burning fat. Of course, it continued to be sold. Ad copy read:

"Here, at last, is a [weight] reducing remedy that will bring you a figure men admire and women envy, without danger to your health or change in your regular mode of living....No diet, no exercise!"

It did work, but the therapeutic index--the difference between the effective dose and the deadly dose--was razor thin. It was not until thousands suffered irreversible harm that it got pulled from the market and remained unavailable. Unavailable, that is, until it was brought back by the internet for those dying to be thin.

There is, however, a way our body naturally burns fat to create heat. When we're born, we go from a nice tropical 98.6 in our mother's womb straight to room temperature, just when we're still all wet and slimy. As an adaptive mechanism to maintain warmth, the appearance of a unique organ around 150 million years ago allowed mammals to maintain our high body temperatures.

That unique organ is called brown adipose tissue, or BAT, and its role is to consume fat calories by generating heat in response to cold exposure. The white fat in our bellies stores fat, but the brown fat, located up between our shoulder blades, burns fat. BAT is essential for thermogenesis, the creation of heat in newborns, but has been considered unnecessary in adults who have higher metabolic rates and increased muscle mass for shivering to warm us up when we get chilled. We used to think brown tissue just shrank away when we grew up, but, if it was there, then it could potentially make a big difference for how many calories we burn every day.

When PET scans were invented to detect metabolically active tissues like cancer, oncologists kept finding hot spots in the neck and shoulder regions that on CT scans turned out not to be cancer, just fat. Then, some observant radiologists noticed they appeared in patients mostly during the cold winter months. When they looked closer at tissue samples taken from people who had undergone neck surgery, they found it: brown fat in adults.

The common message from a number of studies is that BAT is present and active in adults, and the more we have and the more active it is, the thinner we are. And we can rapidly activate our fat-burning brown fat by exposure to cold temperatures. For example, if you hang out in a cold room for two hours in your undies and put your legs on a block of ice for four minutes every five minutes, you can elicit a marked increase in energy expenditure, thanks to brown fat activation. So, the studies point to a potential "natural" intervention to stimulate energy expenditure: Turn down the heat to burn calories (and reduce the carbon footprint in the process).

Thankfully, for those of us who would rather not lay our bare legs on blocks of ice, our brown fat can also be activated by some food ingredients such as those that are covered in my Boosting Brown Fat Through Diet video.


I briefly touch on the role cold temperatures can play in weight loss in The Ice Diet and talk more about calories in (Nutrient-Dense Approach to Weight Management) and calories out (How Much Exercise to Sustain Weight Loss).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link