Treating Kidney Stones with Diet

Treating Kidney Stones with Diet.jpeg

Studies suggest that excessive consumption of animal protein poses a risk of kidney stone formation, likely due to the acid load contributed by the high content of sulfur-containing amino acids in animal protein, a topic I explore in my video, Preventing Kidney Stones with Diet. What about treating kidney stones, though? I discuss that in How to Treat Kidney Stones with Diet. Most stones are calcium oxalate, formed like rock candy when the urine becomes supersaturated. Doctors just assumed that if stones are made out of calcium, we simply have to tell people to reduce their calcium intake. That was the dietary gospel for kidney stone sufferers until a 2002 study published in the New England Journal of Medicine pitted two diets against one another--a low-calcium diet versus a diet low in animal protein and salt. The restriction of animal protein and salt provided greater protection, cutting the risk of having another kidney stone within five years in half.

What about cutting down on oxalates, which are concentrated in certain vegetables? A recent study found there was no increased risk of stone formation with higher vegetable intake. In fact, greater dietary intake of whole plant foods, fruits, and vegetables were each associated with reduced risk independent of other known risk factors for kidney stones. This means we may get additional benefits bulking up on plant foods in addition to just restricting animal foods.

A reduction in animal protein not only reduces the production of acids within the body, but should also limit the excretion of urate, uric acid crystals that can act as seeds to form calcium stones or create entire stones themselves. (Uric acid stones are the second most common kidney stones after calcium.)

There are two ways to reduce uric acid levels in the urine: a reduction of animal protein ingestion, or a variety of drugs. Removing all meat--that is, switching from the standard Western diet to a vegetarian diet--can remove 93% of uric acid crystallization risk within days.

To minimize uric acid crystallization, the goal is to get our urine pH up to ideally as high as 6.8. A number of alkalinizing chemicals have been developed for just this purpose, but we can naturally alkalize our urine up to the recommended 6.8 using purely dietary means. Namely, by removing all meat, someone eating the standard Western diet can go from a pH of 5.95 to the goal target of 6.8--simply by eating plant-based. As I describe in my video, Testing Your Diet with Pee & Purple Cabbage, we can inexpensively test our own diets with a little bathroom chemistry, for not all plant foods are alkalinizing and not all animal foods are equally acidifying.

A Load of Acid to Kidney Evaluation (LAKE) score has been developed to take into account both the acid load of foods and their typical serving sizes. It can be used to help people modify their diet for the prevention of both uric acid and calcium kidney stones, as well as other diseases. What did researchers find? The single most acid-producing food is fish, like tuna. Then, in descending order, are pork, then poultry, cheese (though milk and other dairy are much less acidifying), and beef followed by eggs. (Eggs are actually more acidic than beef, but people tend to eat fewer eggs in one sitting.) Some grains, like bread and rice, can be a little acid-forming, but pasta is not. Beans are significantly alkaline-forming, but not as much as fruits or even better, vegetables, which are the most alkaline-forming of all.

Through dietary changes alone, we may be able to dissolve uric acid stones completely and cure patients without drugs or surgery.

To summarize, the most important things we can do diet-wise is to drink 10 to 12 cups of water a day, reduce animal protein, reduce salt, and eat more vegetables and more vegetarian.

Want to try to calculate their LAKE score for the day? Just multiply the number of servings you have of each of the food groups listed in the graph in the video times the score.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank

Original Link

Treating Kidney Stones with Diet

Treating Kidney Stones with Diet.jpeg

Studies suggest that excessive consumption of animal protein poses a risk of kidney stone formation, likely due to the acid load contributed by the high content of sulfur-containing amino acids in animal protein, a topic I explore in my video, Preventing Kidney Stones with Diet. What about treating kidney stones, though? I discuss that in How to Treat Kidney Stones with Diet. Most stones are calcium oxalate, formed like rock candy when the urine becomes supersaturated. Doctors just assumed that if stones are made out of calcium, we simply have to tell people to reduce their calcium intake. That was the dietary gospel for kidney stone sufferers until a 2002 study published in the New England Journal of Medicine pitted two diets against one another--a low-calcium diet versus a diet low in animal protein and salt. The restriction of animal protein and salt provided greater protection, cutting the risk of having another kidney stone within five years in half.

What about cutting down on oxalates, which are concentrated in certain vegetables? A recent study found there was no increased risk of stone formation with higher vegetable intake. In fact, greater dietary intake of whole plant foods, fruits, and vegetables were each associated with reduced risk independent of other known risk factors for kidney stones. This means we may get additional benefits bulking up on plant foods in addition to just restricting animal foods.

A reduction in animal protein not only reduces the production of acids within the body, but should also limit the excretion of urate, uric acid crystals that can act as seeds to form calcium stones or create entire stones themselves. (Uric acid stones are the second most common kidney stones after calcium.)

There are two ways to reduce uric acid levels in the urine: a reduction of animal protein ingestion, or a variety of drugs. Removing all meat--that is, switching from the standard Western diet to a vegetarian diet--can remove 93% of uric acid crystallization risk within days.

To minimize uric acid crystallization, the goal is to get our urine pH up to ideally as high as 6.8. A number of alkalinizing chemicals have been developed for just this purpose, but we can naturally alkalize our urine up to the recommended 6.8 using purely dietary means. Namely, by removing all meat, someone eating the standard Western diet can go from a pH of 5.95 to the goal target of 6.8--simply by eating plant-based. As I describe in my video, Testing Your Diet with Pee & Purple Cabbage, we can inexpensively test our own diets with a little bathroom chemistry, for not all plant foods are alkalinizing and not all animal foods are equally acidifying.

A Load of Acid to Kidney Evaluation (LAKE) score has been developed to take into account both the acid load of foods and their typical serving sizes. It can be used to help people modify their diet for the prevention of both uric acid and calcium kidney stones, as well as other diseases. What did researchers find? The single most acid-producing food is fish, like tuna. Then, in descending order, are pork, then poultry, cheese (though milk and other dairy are much less acidifying), and beef followed by eggs. (Eggs are actually more acidic than beef, but people tend to eat fewer eggs in one sitting.) Some grains, like bread and rice, can be a little acid-forming, but pasta is not. Beans are significantly alkaline-forming, but not as much as fruits or even better, vegetables, which are the most alkaline-forming of all.

Through dietary changes alone, we may be able to dissolve uric acid stones completely and cure patients without drugs or surgery.

To summarize, the most important things we can do diet-wise is to drink 10 to 12 cups of water a day, reduce animal protein, reduce salt, and eat more vegetables and more vegetarian.

Want to try to calculate their LAKE score for the day? Just multiply the number of servings you have of each of the food groups listed in the graph in the video times the score.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank

Original Link

The Best Diet to Prevent Kidney Stones

The Best Diet to Prevent Kidney Stones.jpeg

In my video How to Prevent Kidney Stones With Diet you can see what the jagged surface of a kidney stone looks like under a microscope. Imagine one of those scraping down your urinary canal! Kidney stones affect approximately 1 in 11 people in the United States. Twenty years ago it was only 1 in 20, representing a dramatic increase in the prevalence of the disease that started rising after World War II. Our first clue as to why was a study published in the 70's, which found a striking relationship between stone incidence and the consumption of animal protein. This was a population study, though, so it couldn't prove cause and effect.

That study inspired researchers in Britain to do an interventional study, adding animal protein to subjects' diets, such as an extra can of tuna fish a day, and measuring stone-forming risk factors in their urine. Participants' overall probability of forming stones increased 250% during those days they were eating that extra fish. And the so-called "high animal protein diet" was just enough to bring intake up to that of the average American. So Americans' intake of meat appears to markedly increase the risk of kidney stones.

What about consuming no meat at all? By the late 70's we knew that the only dietary factor consistently associated with kidney stones was animal protein. The higher the intake of animal protein, the more likely the individual was to not only get their first kidney stone, but to then suffer from subsequent multiple stones. This effect was not found for high protein intake in general, but specifically high animal protein intake. Conversely, a diet low in animal protein may dramatically reduce the overall probability of forming stones. This may explain the apparently low incidence of stones in vegetarian societies, so researchers advocated "a more vegetarian form of diet" as a means of reducing the risk.

It wasn't until 2014 that vegetarian kidney stone risk was studied in detail, though. Using hospital admissions data, researchers found that vegetarians were indeed at a lower risk of being hospitalized for kidney stones. It's not all or nothing, though. Among meat-eaters, increasing meat intake is associated with a higher risk of developing kidney stones, whereas a high intake of fresh fruit, fiber, and magnesium may reduce the risk.

Which animal protein is the worst? People who form kidney stones are commonly advised to restrict the intake of red meat to decrease stone risk, but what about chicken and fish? Despite compelling evidence that excessive animal protein consumption enhances the risk of stone formation, the effect of different sources of animal protein had not been explored until another study in 2014. Researchers compared the effects of salmon and cod, chicken breast meat, and burger and steak. In terms of uric acid production, they found that gram for gram fish may actually be worse. However, the overall effects were complex. Basically, stone formers should be counseled to limit the intake of all animal proteins, and not by just a little bit. Only those who markedly decrease their animal protein intake may expect to benefit.

Making our urine more alkaline can also help prevent the formation of kidney stones (and even dissolve and cure uric acid stones). How can you tell the pH of your urine? See my video Testing Your Diet with Pee & Purple Cabbage.

For more on kidney stones, see How to Treat Kidney Stones with Diet and Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?. And check out my overview of kidney health in How Not to Die from Kidney Disease.

Uric acid can also crystallize in our joints, but the good news is that there are natural treatments. See Gout Treatment with a Cherry on Top and Treating Gout with Cherry Juice.

Kidney stones are just one more reason that Plant Protein is Preferable.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Best Diet to Prevent Kidney Stones

The Best Diet to Prevent Kidney Stones.jpeg

In my video How to Prevent Kidney Stones With Diet you can see what the jagged surface of a kidney stone looks like under a microscope. Imagine one of those scraping down your urinary canal! Kidney stones affect approximately 1 in 11 people in the United States. Twenty years ago it was only 1 in 20, representing a dramatic increase in the prevalence of the disease that started rising after World War II. Our first clue as to why was a study published in the 70's, which found a striking relationship between stone incidence and the consumption of animal protein. This was a population study, though, so it couldn't prove cause and effect.

That study inspired researchers in Britain to do an interventional study, adding animal protein to subjects' diets, such as an extra can of tuna fish a day, and measuring stone-forming risk factors in their urine. Participants' overall probability of forming stones increased 250% during those days they were eating that extra fish. And the so-called "high animal protein diet" was just enough to bring intake up to that of the average American. So Americans' intake of meat appears to markedly increase the risk of kidney stones.

What about consuming no meat at all? By the late 70's we knew that the only dietary factor consistently associated with kidney stones was animal protein. The higher the intake of animal protein, the more likely the individual was to not only get their first kidney stone, but to then suffer from subsequent multiple stones. This effect was not found for high protein intake in general, but specifically high animal protein intake. Conversely, a diet low in animal protein may dramatically reduce the overall probability of forming stones. This may explain the apparently low incidence of stones in vegetarian societies, so researchers advocated "a more vegetarian form of diet" as a means of reducing the risk.

It wasn't until 2014 that vegetarian kidney stone risk was studied in detail, though. Using hospital admissions data, researchers found that vegetarians were indeed at a lower risk of being hospitalized for kidney stones. It's not all or nothing, though. Among meat-eaters, increasing meat intake is associated with a higher risk of developing kidney stones, whereas a high intake of fresh fruit, fiber, and magnesium may reduce the risk.

Which animal protein is the worst? People who form kidney stones are commonly advised to restrict the intake of red meat to decrease stone risk, but what about chicken and fish? Despite compelling evidence that excessive animal protein consumption enhances the risk of stone formation, the effect of different sources of animal protein had not been explored until another study in 2014. Researchers compared the effects of salmon and cod, chicken breast meat, and burger and steak. In terms of uric acid production, they found that gram for gram fish may actually be worse. However, the overall effects were complex. Basically, stone formers should be counseled to limit the intake of all animal proteins, and not by just a little bit. Only those who markedly decrease their animal protein intake may expect to benefit.

Making our urine more alkaline can also help prevent the formation of kidney stones (and even dissolve and cure uric acid stones). How can you tell the pH of your urine? See my video Testing Your Diet with Pee & Purple Cabbage.

For more on kidney stones, see How to Treat Kidney Stones with Diet and Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?. And check out my overview of kidney health in How Not to Die from Kidney Disease.

Uric acid can also crystallize in our joints, but the good news is that there are natural treatments. See Gout Treatment with a Cherry on Top and Treating Gout with Cherry Juice.

Kidney stones are just one more reason that Plant Protein is Preferable.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Why Smoothies are Better Than Juicing

NF-June9.jpeg

Studies such as a recent Harvard School of Public Health investigation found that the consumption of whole fruits is associated with a significantly lower risk of type 2 diabetes, whereas fruit juice consumption is associated with a higher risk, highlighting the dramatic difference between eating whole fruits and drinking fruit juice. Cholesterol serves as another example. If we eat apples, our cholesterol drops. On the other hand, if we drink apple juice, our cholesterol may actually go up a little. Leaving just a little of the fiber behind--as in cloudy apple juice--was found to add back in some of the benefit.

We used to think of fiber as just a bulking agent that helps with bowel regularity. We now know fiber is digestible by our gut bacteria, which make short chain fatty acids (SCFAs) out of it. SCFAs have a number of health promoting effects, such as inhibiting the growth of bad bacteria and increasing mineral absorption. For example, experimentally infused into the rectum of the human body, SCFAs can stimulate calcium absorption, so much so that we can improve the bone mineral density of teenagers just by giving them the fiber naturally found in foods like onions, asparagus, and bananas.

Our good bacteria also uses fiber to maintain normal bowel structure and function, preventing or alleviating diarrhea, stimulating colonic blood flow up to five-fold, and increasing fluid and electrolyte uptake. The major fuel for the cells that line our colon is butyrate, which our good bacteria make from fiber. We feed them, and they feed us right back.

If the only difference between fruit and fruit juice is fiber, why can't the juice industry just add some fiber back to the juice? The reason is because we remove a lot more than fiber when we juice fruits and vegetables. We also lose all the nutrients that are bound to the fiber.

In the 1980's, a study (highlighted in my video, Juicing Removes More Than Just Fiber) found a discrepancy in the amount of fiber in carob using two different methods. A gap of 21.5 percent was identified not as fiber but as nonextractable polyphenols, a class of phytonutrients thought to have an array of health-promoting effects. Some of the effects associated with the intake of dietary fiber in plants may actually be due to the presence of these polyphenols.

Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols. Most polyphenol phytonutrients in plants are stuck to the fiber. These so-called missing polyphenols make it down to our colon, are liberated by our friendly flora and can then get absorbed into our system. The phytonutrients in fruit and vegetable juice may just be the tip of the iceberg.

For those that like drinking their fruits and vegetables, these findings suggest that smoothies may be preferable. I can imagine people who eat really healthy thinking they get so much fiber from their regular diet that they need not concern themselves with the loss from juicing. But we may be losing more than we think.

For those that like drinking their fruits and vegetables, this suggests smoothies are preferable. I can imagine people who eat really healthy thinking they get so much fiber from their regular diet that they need not concern themselves with the loss from juicing, but they may be losing more than they think.

Why are polyphenol phytonutrients important? See, for example, my video How to Slow Brain Aging by Two Years

Not that fiber isn't important in its own right. Check out:

For more on smoothies, check out:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Craig Sunter / Flickr

Original Link

How Plants Can be Both Safer and More Effective

NF-Sep10 Magic Bullets vs. Promiscuous plants.jpg

During the last decade, the drug industry has followed an assumption that a single drug hitting a single target was the "rational" way to design drugs. We're learning that Mother Nature may be a bit too complicated for that. "Strategies for targeting single genes or proteins ignore a very important fact that most, if not all diseases, involve a sophisticated network system." For example, one little family of immune molecules involves about 50 different keys fitting into about 20 different locks, often acting with redundancy, making selection of an appropriate drug to antagonize one key or one lock ineffective in the long run. A whole list of agents has been developed to target a specific molecule for the treatment of inflammatory bowel disease, for example, but they have all flopped. That's why drug companies are now working on so-called "promiscuous" drugs that try to affect multiple pathways simultaneously.

Meanwhile, since ancient times, natural agents derived from plants--fruits, vegetables, spices, beans, and grains--have been preferred as potential therapeutics for most chronic diseases, not only because of their safety, affordability, and long-term use, but also "for their ability to target multiple cell signaling pathways, a therapeutic virtue." (See Magic Bullets vs. Promiscuous Plants).

One example of a successful promiscuous plant-based drug is aspirin. It doesn't just target inflammation and offer pain relief, but can act as a blood thinner and help prevent preeclampsia and even some types of cancer. Curcumin is another hopeful plant-based medicine. Aspirin is an extract of the willow tree bark (and is present in other fruits and vegetables); curcumin is an extract of turmeric root. It's so anti-inflammatory that it may even work through the skin--a traditional use was to wrap sprains and injuries with turmeric soaked poultices, a use that continues to this day. Curcumin is so anti-inflammatory that it can help counter the effects of mustard gas.

In a petri dish, curcumin extinguishes the response of spleen cells to an inflammatory cytokine. Promising effects have also been observed in patients with a variety of inflammatory diseases. One of the great things about curcumin is that it also appears to be very safe. One of the reasons may be that despite its powerful pharmacological effects, the same pathway promiscuity that may account for its effectiveness may act synergistically to neutralize side-effects. For example, turmeric has been traditionally used as a bronchodilator to open airways in conditions like asthma. Many of the adrenaline-like drugs that do the same thing can raise blood pressure. The reason turmeric doesn't may be because it has different components with opposing activities, such as calcium channel-blocking effects that may actually lower blood pressure, and so the side effects may cancel each other out.

This strength in promiscuity, though, is also a weakness. The U.S. Food and Drug Administration has been reluctant to approve plant extracts, which by definition are composed of mixtures of different compounds. It's a Catch-22. One drug, one chemical, one mechanism of action and you can patent it, get FDA approval, and make a billion off it, but it may not work very well. On the other hand, there might be a safe, natural alternative that works better, but industry and the government may not be interested.

However, there is hope on the horizon. The FDA approved a green tea ointment as a prescription drug for the treatment of genital warts (See Treating Genital Warts with Green Tea), making it the first prescription plant approved in the United States. If you think that's neat, check out Treating Gorlin Syndrome With Green Tea.

So have drug companies abandoned their model and started pouring money into plants? No. "Having discovered that so-called magic bullet has been largely unsuccessful, they just propose creating non-selective drugs. Instead of magic bullets, magic shotguns."

I go into more detail about the Catch-22 in my last video Plants as Intellectual Property - Patently Wrong?

Aspirin isn't just found in willow tree bark, but throughout the plant kingdom, including fruits and vegetables. See: Aspirin Levels in Plant Foods.

My video Power Plants shows how plant foods are not to be underestimated.

More on turmeric curcumin and inflammation here:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my videos for free by clicking here and watch my full 2012 - 2015 presentations Uprooting the Leading Causes of Death, More than an Apple a Day, From Table to Able, and Food as Medicine.

Image Credit: Shu / Flickr

Original Link

Phytates in Beans: Anti-Nutrient or Anti-Cancer?

NF-May28 Phytates for the Treatment of Cancer.jpg

In my videos, Phytates in the Prevention of Cancer and Phytates for Rehabilitating Cancer Cells, I described how phytates in beans may be the reason why legumes are so successful in preventing cancer and re-educating cancer cells. What about phytates for the treatment of cancer?

Colorectal cancer is the second leading cause of cancer death in the United States. It arises from "adenomatous polyps," meaning that colon cancer starts out as a benign little bump called a polyp and then grows into cancer that can eventually spread to other organs and kill. So the National Cancer Institute funded the Polyp Prevention Trial, highlighted in my video, Phytates for the Treatment of Cancer, to determine the effects of a high-fiber, high fruit and vegetable, low-fat diet.

Researchers found no significant associations between polyp formation and overall change in fruit and vegetable consumption. However, those with the greatest increase in bean intake only had about a third of the odds of advanced polyps popping up. It could have been the fiber in the beans, but there's lots of fiber in fruits and vegetables, too. So it may have been the phytate.

If the tumors develop from polyps, they still need to spread. Tumor growth, invasion, and metastasis are multistep processes that include cell proliferation, digestion through the surrounding tissue, and migration through barrier membranes to reach the bloodstream so the tumor can establish new proliferating colonies of cancer cells. A critical event in tumor cell invasion is the first step: the tunneling through the surrounding matrix. To do this, the cancer cells use a set of enzymes called matrix metalloproteinases. This is where phytates might come in. We've known that phytates inhibit cancer cell migration in vitro, and now perhaps we know why. Phytates help block the ability of cancer cells to produce the tumor invasion enzyme in the first place (at least for human colon and breast cancer cells).

So what happens if you give phytates to breast cancer patients? Although a few case studies where phytates were given in combination with chemotherapy clearly showed encouraging data, organized, controlled, randomized clinical studies were never done--until now. Fourteen women with invasive breast cancer were divided randomly into two groups. One group got extra phytates; the other got placebo. At the end of six months, the phytate group had a better quality of life, significantly more functionality, fewer symptoms from the chemo, and did not get the drop in immune cells and platelets chemo patients normally experience.

What are the potential side effects of phytates? Less heart disease, less diabetes, and fewer kidney stones.

Because cancer development is such an extended process--it can take decades to grow--we need cancer preventive agents that we can take long-term. Phytates, which naturally occur in beans, grains, nuts, and seeds, seem to fit the bill.

In the past, there were concerns that the intake of foods high in phytates might reduce the bioavailability of dietary minerals, but recent studies demonstrate that this co-called "anti-nutrient" effect can be manifested only when large quantities of phytates are consumed in combination with a nutrient poor diet. For example, there used to be a concern that phytate consumption might lead to calcium deficiency, which then led to weakened bones, but researchers discovered that the opposite was true, that phytates actually protect against osteoporosis (See Phytates for the Prevention of Osteoporosis). In essence, phytates have many characteristics of a vitamin, contrary to the established and, unfortunately, still existing dogma among nutritionists regarding its 'anti-nutrient' role.

As one paper in the International Journal of Food Science & Technology suggests:

"Given the numerous health benefits, phytates participation in important intracellular biochemical pathways, normal physiological presence in our cells, tissues, plasma, urine, etc., the levels of which fluctuate with intake, epidemiological correlates of phytate deficiency with disease and reversal of those conditions by adequate intake, and safety - all strongly suggest for phytates inclusion as an essential nutrient, perhaps a vitamin."

The paper concludes that inclusion of phytates in our diet for prevention and therapy of various ailments, cancer in particular, is warranted.

More on preventing tumor invasion and metastasis in:

Other foods that can help stop the progression of precancerous lesions (like the adenomatous polyps) are profiled in Strawberries versus Esophageal Cancer and Black Raspberries versus Oral Cancer.

There's a substance in mushrooms that's also another "essential" nutrient candidate. See Ergothioneine: A New Vitamin?

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: The Ewan / Flickr

Original Link

Who Should be Careful About Curcumin?

NF-Feb5 Who Shouldn't Consume Curcumin or Turmeric?.jpg

Following flax and wheatgrass, turmeric is the third best-selling botanical dietary supplement, racking up $12 million in sales. Currently, sales are increasing at a rate of 20%.

"Curcumin is a natural plant product extracted from the turmeric root and is used commonly as a food additive popular for its pleasant mild aroma and exotic yellow color. It is widely considered unlikely to cause side effects." However, just because something is natural doesn't mean it's not toxic. Strychnine is natural; cyanide is natural. Lead, mercury and plutonium are all elements--can't get more natural than that! But turmeric is just a plant. Surely plants can't be dangerous? Tell that to Socrates.

"In considering the validity of the widely accepted notion that complementary and alternative medicine is a safer approach to therapy, we must remind ourselves and our patients that a therapy that exerts a biologic effect is, by definition, a drug and can have toxicity." It cannot be assumed that diet-derived agents will be innocuous when administered as pharmaceutical formulations at doses likely to exceed those consumed in the diet.

Traditional Indian diets may include as much as a teaspoon of turmeric a day. Doses of turmeric that have been used in human studies range from less than just a 16th of a teaspoon a day to two tablespoons a day for over a month. On the other hand, the curcumin trials have used up to the amount found in cups of the spice, around 100 times more than what curry lovers have been eating for centuries.

Studies have yet to show overt serious side effects in the short-term. However, if we combine high dose curcumin with black pepper, resulting in a 2000% boost in bioavailability (See Boosting the Bioavailability of Curcumin), it could be like consuming the equivalent of 29 cups of turmeric a day. That kind of intake could bring peak blood levels to the range where you start seeing some significant DNA damage in vitro.

So just incorporating turmeric into your cooking may be better than taking curcumin supplements, especially during pregnancy. The only other contraindication cited in the most recent review on curcumin was the potential to trigger gallbladder pain in individuals with gallstones.

If anything, curcumin may help protect liver function and help prevent gallstones by acting as a cholecystokinetic agent, meaning that it facilitates the pumping action of the gallbladder to keep the bile from stagnating. In one study, profiled in my video, Who Shouldn't Consume Turmeric or Curcmin?, researchers gave people a small dose of curcumin, about the amount found in a quarter teaspoon of turmeric and, using ultrasound, were able to visualize the gallbladder squeezing down in response, with an average change in volume of about 29%. Optimally, though we want to squeeze it in half. So the researchers repeated the experiment with different doses. It took about 40 milligrams to get a 50% contraction, or about a third of a teaspoon of turmeric every day.

On one hand that's great--totally doable. On the other hand, that's some incredibly powerful stuff! What if you had a gallbladder obstruction? What if you had a stone blocking your bile duct? If you eat something that makes your gallbladder squeeze so much, it could cause pain. So patients with biliary tract obstruction should be careful about consuming curcumin. For everyone else, these results suggest that curcumin can effectively "induce the gallbladder to empty and thereby reduce the risk of gallstone formation and ultimately even gallbladder cancer."

Too much turmeric, though, may increase the risk of kidney stones. As I mentioned in Oxalates in Cinnamon, turmeric is high in soluble oxalates which can bind to calcium and form insoluble calcium oxalate, which is responsible for approximately 75% of all kidney stones. "The consumption of even moderate amounts of turmeric would therefore not be recommended for people with a tendency to form kidney stones." Such folks should restrict the consumption of total dietary oxalate to less than 40 to 50 mg/day, which means no more than at most a teaspoon of turmeric. Those with gout, for example, are by definition, it appears, at high risk for kidney stones, and so if their doctor wanted to treat gout inflammation with high dose turmeric, he or she might consider curcumin supplements, because to reach high levels of curcumin in turmeric form would incur too much of an oxalate load.

If we are going to take a supplement, how do we choose? The latest review recommends purchasing from Western suppliers that follow recommended Good Manufacturing Practices, which may decrease the likelihood of buying an adulterated product.

I previously discussed the role spices play in squelching inflammation and free radicals in Which Spices Fight Inflammation? and Spicing Up DNA Protection. Then out of the lab into the clinic with attempts to test the ability of turmeric extracts to treat joint inflammation with Turmeric Curcumin and Rheumatoid Arthritis and Turmeric Curcumin and Osteoarthritis.

I wish there was more science on wheatgrass. I just had that one unhelpful anecdote in my video How Much Broccoli Is Too Much? There is good science on flax though. See:

More on gallbladder health can be found in my video Cholesterol Gallstones. And those who are susceptible to kidney stones should try to alkalinize their urine by eating lots of dark green leafy vegetables. See Testing Your Diet with Pee & Purple Cabbage.

Based on this new science on turmeric (lots more to come!), I now try to include it in my family's daily diet.

-Michael Greger, M.D

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: sean dreilinger / Flickr

Original Link

5 Ways to Optimize Bone Health

Cray cray for calcium? Indeed! The dairy industry has brilliantly distorted the idea that the more of its products you consume, the better off your bones will be for the long haul. If only it were that simple…. Dairy products do indeed deliver a dose of calcium and fortified vitamin D, but that is not the …

Original Link

Foods for Glaucoma

NF-Dec30 Which Foods Fight Glaucoma?.jpg

Glaucoma is the second leading cause of legal blindness in white women, and the number one cause of blindness in African-American women. In a study I profile in the video Greens vs. Glaucoma, researchers chose a population of African-American women to study the effects of fruit and vegetable consumption on glaucoma risk because they were specifically interested in studying the effect of foods with the highest concentration of those eye-protecting phytonutrients like zeaxanthin. Zeaxanthin is found primarily in plants such as kale and collard greens. (It is also found in eggs--find out how much in Egg Industry Blind Spot). However, we'd be lucky if we could find one in ten white people eating even a single serving of these dark green leafy vegetables a month, whereas nearly nine out of ten African-American women in the study consumed this amount.

What did the researchers find? Well, as I've stressed over the years, all fruits and vegetables are not the same (see for example, How to Reach the Antioxidant "RDA"). Whether the participants hardly ever ate bananas or had one or more every day didn't seem to matter much in terms of the risk of glaucoma. However, eating only a couple oranges every week was associated with dramatically lower risk. Orange juice was not associated with a lower risk, though, even if drunk every day. A similar finding was found for peaches: fresh peaches seemed to help, but canned peaches didn't.

Similarly the intake of vegetables in general as a catch-all term didn't seem to matter. For example, whether subjects ate a green salad twice a week, once a week, or zero times a week didn't seem to matter when it came to reducing glaucoma risk, but most people's salads are pretty pitiful. It was a different story for kale and collard greens: just two or three servings a month was associated with half the risk of glaucoma compared to once a month or less.

It may be especially important for white people to consume kale and collard greens. The lighter our eye color, the more greens we need to eat. Blue eyes let 100 times more light through, so people with blue or gray eyes appear significantly more vulnerable to damage compared to brown or black. Green and hazel fall somewhere in the middle.

This is interesting: carrots appeared to be less protective in black women compared to white women. They suggest it could be a difference in food preparation methods. Perhaps the African-American subjects tended to eat carrots raw, limiting the absorption of certain nutrients, while they chopped and prepared their collard greens with oil, making the nutrients more bioavailable because the absorption of carotenoid phytonutrients depends on the presence of fat. This is why I encourage people to eat nuts or seeds with the greens--such as a little tahini sauce or something.

Why not just take a zeaxanthin pill? We don't know what exactly it is in these wonderful foods that's working their wonders, so it's probably better to just eat our greens rather than supplements. In fact, people that take calcium or iron supplements may even be doubling, quadrupling, or septupling their odds of glaucoma. It's better to get most of our nutrients from produce, not pills.

I wish there were more studies on under-represented populations. I've covered a few, such as Preventing Breast Cancer By Any Greens Necessary, but I am constantly on the lookout for more.

My other videos on glaucoma include Prevent Glaucoma and See 27 Miles Farther and Dietary Treatment of Glaucoma. For more on eye health check out my video, Dietary Prevention of Age-Related Macular Degeneration.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: bruno garciact / Flickr

Original Link