Foods to Eat to Help Prevent Diabetes

Oct 26 Foods to Eat copy.jpeg

Why is meat consumption a risk factor for diabetes? Why does there appear to be a stepwise reduction in diabetes rates as meat consumption drops? Instead of avoiding something in meat, it may be that people are getting something protective from plants. Free radicals may be an important trigger for insulin resistance, and antioxidants in plant foods may help. Put people on a plant-based diet, and their antioxidant enzymes shoot up. So not only do plants provide antioxidants, but may boost our own anti-endogenous antioxidant defenses, whereas, on the conventional diabetic diet, they get worse.

In my video, How May Plants Protect Against Diabetes, I discuss how there are phytonutrients in plant foods that may help lower chronic disease prevalence by acting as antioxidants and anti-cancer agents, and by lowering cholesterol and blood sugar. Some, we're now theorizing, may even be lipotropes, which have the capacity to hasten the removal of fat from our liver and other organs, counteracting the inflammatory cascade believed to be directly initiated by saturated-fat-containing foods. Fat in the bloodstream--from the fat on our bodies or the fat we eat--not only causes insulin resistance, but also produces a low-grade inflammation that can contribute to heart disease and non-alcoholic fatty liver disease.

Fiber may also decrease insulin resistance. One of the ways it may do so is by helping to rid the body of excess estrogen. There is strong evidence for a direct role of estrogens in the cause of diabetes, and it's been demonstrated that certain gut bacteria can produce estrogens in our colon. High-fat, low-fiber diets appear to stimulate the metabolic activity of these estrogen-producing intestinal bacteria. This is a problem for men, too. Obesity is associated with low testosterone levels and marked elevations of estrogens produced not only by fat cells but also by some of the bacteria in our gut. Our intestinal bacteria may produce these so-called diabetogens (diabetes-causing compounds) from the fats we eat. By eating lots of fiber, though, we can flush this excess estrogen out of our bodies.

Vegetarian women, for example, excrete two to three times more estrogens in their stools than omnivorous women, which may be why omnivorous women have 50% higher estrogen blood levels. These differences in estrogen metabolism may help explain the lower incidence of diabetes in those eating more plant-based diets, as well as the lower incidence of breast cancer in vegetarian women, who get rid of twice as much estrogen because they get rid of twice as much daily waste in general.

Either way, "[m]eat consumption is consistently associated with diabetes risk. Dietary habits are readily modifiable, but individuals and clinicians will consider dietary changes only if they are aware of the potential benefits of doing so." The identification of meat consumption as a risk factor for diabetes provides helpful guidance that sets the stage for beneficial behavioral changes. Meat consumption is something doctors can easily ask about, and, once identified, at-risk individuals can then be encouraged to familiarize themselves with meatless options.


Plant foods may also protect against diabetes by replacing animal foods. Learn more with my Why Is Meat a Risk Factor for Diabetes? video.

What if your entire diet was filled with plants? See Plant-Based Diets and Diabetes. Find out which plants may be particularly protective with these videos: Amla Versus Diabetes, Flaxseed vs. Diabetes, and Diabetics Should Take Their Pulses.

Unfortunately, cinnamon has fallen out of favor. See my Update on Cinnamon for Blood Sugar Control.

I also have an ever-growing series on the science behind type 2 diabetes:

For more on the estrogen connection, see Relieving Yourself of Excess Estrogen and Breast Cancer and Constipation.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Foods to Eat to Help Prevent Diabetes

Oct 26 Foods to Eat copy.jpeg

Why is meat consumption a risk factor for diabetes? Why does there appear to be a stepwise reduction in diabetes rates as meat consumption drops? Instead of avoiding something in meat, it may be that people are getting something protective from plants. Free radicals may be an important trigger for insulin resistance, and antioxidants in plant foods may help. Put people on a plant-based diet, and their antioxidant enzymes shoot up. So not only do plants provide antioxidants, but may boost our own anti-endogenous antioxidant defenses, whereas, on the conventional diabetic diet, they get worse.

In my video, How May Plants Protect Against Diabetes, I discuss how there are phytonutrients in plant foods that may help lower chronic disease prevalence by acting as antioxidants and anti-cancer agents, and by lowering cholesterol and blood sugar. Some, we're now theorizing, may even be lipotropes, which have the capacity to hasten the removal of fat from our liver and other organs, counteracting the inflammatory cascade believed to be directly initiated by saturated-fat-containing foods. Fat in the bloodstream--from the fat on our bodies or the fat we eat--not only causes insulin resistance, but also produces a low-grade inflammation that can contribute to heart disease and non-alcoholic fatty liver disease.

Fiber may also decrease insulin resistance. One of the ways it may do so is by helping to rid the body of excess estrogen. There is strong evidence for a direct role of estrogens in the cause of diabetes, and it's been demonstrated that certain gut bacteria can produce estrogens in our colon. High-fat, low-fiber diets appear to stimulate the metabolic activity of these estrogen-producing intestinal bacteria. This is a problem for men, too. Obesity is associated with low testosterone levels and marked elevations of estrogens produced not only by fat cells but also by some of the bacteria in our gut. Our intestinal bacteria may produce these so-called diabetogens (diabetes-causing compounds) from the fats we eat. By eating lots of fiber, though, we can flush this excess estrogen out of our bodies.

Vegetarian women, for example, excrete two to three times more estrogens in their stools than omnivorous women, which may be why omnivorous women have 50% higher estrogen blood levels. These differences in estrogen metabolism may help explain the lower incidence of diabetes in those eating more plant-based diets, as well as the lower incidence of breast cancer in vegetarian women, who get rid of twice as much estrogen because they get rid of twice as much daily waste in general.

Either way, "[m]eat consumption is consistently associated with diabetes risk. Dietary habits are readily modifiable, but individuals and clinicians will consider dietary changes only if they are aware of the potential benefits of doing so." The identification of meat consumption as a risk factor for diabetes provides helpful guidance that sets the stage for beneficial behavioral changes. Meat consumption is something doctors can easily ask about, and, once identified, at-risk individuals can then be encouraged to familiarize themselves with meatless options.


Plant foods may also protect against diabetes by replacing animal foods. Learn more with my Why Is Meat a Risk Factor for Diabetes? video.

What if your entire diet was filled with plants? See Plant-Based Diets and Diabetes. Find out which plants may be particularly protective with these videos: Amla Versus Diabetes, Flaxseed vs. Diabetes, and Diabetics Should Take Their Pulses.

Unfortunately, cinnamon has fallen out of favor. See my Update on Cinnamon for Blood Sugar Control.

I also have an ever-growing series on the science behind type 2 diabetes:

For more on the estrogen connection, see Relieving Yourself of Excess Estrogen and Breast Cancer and Constipation.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Does Rye Bread Protect Against Cancer?

Sept 14 Rye Bread copy.jpeg

Previously, I've explored the beneficial effects of flaxseeds on prostate cancer (Flaxseeds vs. Prostate Cancer), as well as breast cancer prevention and survival (Flaxseeds & Breast Cancer Prevention and Breast Cancer Survival & Lignan Intake). The cancer-fighting effect of flaxseeds is thought to be because of the lignans, which are cancer-fighting plant compounds found in red wine, whole grains, greens (cruciferous vegetables), and especially sesame seeds and flaxseeds, the most concentrated source on Earth. But this is based on per unit weight. People eat a lot more grains than seeds. Of the grains people eat, the highest concentration of lignans is found in rye. So, can rye intake decrease the risk of cancer? Theoretically yes, but unlike flaxseeds, it's never been directly put to the test... until now.

In my video Does Rye Bread Protect Against Cancer?, I discuss the evidence that does exist. If you measure the levels of lignans in the bloodstream of women living in a region where they eat lots of rye, the odds of breast cancer in women with the highest levels do seem to be just half that of women with the lowest levels. But lignans are also found in tea and berries, so we couldn't be sure where the protection is coming from. To get around this, researchers decided to measure alkylresorcinol metabolites, a class of phytonutrients relatively unique to whole grains.

Researchers collected urine from women with breast cancer and women without, and the women with breast cancer had significantly lower levels compared to those without. This suggests that women at risk for breast cancer consume significantly lower amounts of whole grains like rye. But if we follow older women in their 50s through 60s, the intake of whole grain products was not associated with risk of breast cancer. A similar result was found in older men for prostate cancer. Is it just too late at that point?

We know from data on dairy that diet in our early life may be important in the development of prostate cancer, particularly around puberty when the prostate grows and matures. If you look at what men were drinking in adolescence, daily milk consumption appeared to triple their risk of advanced prostate cancer later in life. (Learn more about milk and prostate cancer in my video Prostate Cancer and Organic Milk vs. Almond Milk.) So, researchers looked at daily rye bread consumption during adolescence.

Those who consumed rye bread daily as kids did appear to only have half the odds of advanced prostate cancer. This is consistent with immigrant studies suggesting that the first two decades of life may be most important for setting the pattern for cancer development in later life. These findings are certainly important for how we should feed our kids, but if we're already middle-aged, is it too late to change course? To answer this question, researchers in Sweden put it to the test.

Researchers took men with prostate cancer and split them into two groups. One group got lots of rye bread, while the other got lots of high-fiber, but low-lignan, wheat bread. There's been some indirect evidence that rye may be active against prostate cancer--like lower cancer rates in regions with high rye consumption--but it had never been directly investigated... until this study. Biopsies were taken from the subjects' tumors before and after three weeks of bread eating, and the number of cancer cells that were dying off were counted. Though there was no change in the cancer cell clearance of the control bread group, there was a 180% increase in the number of cancer cells being killed off in the rye group. A follow-up study lasting 6 weeks found a 14% decrease in PSA levels, a cancer marker suggesting a shrinkage of the tumor.

The researchers note they used very high rye bread intakes, and it remains to be tested if more normal intake levels would have effects that are of clinical importance. As a sadly typical American, my lack of intimate familiarity of the metric system did not flag the "485 grams" of rye bread a day as far out of the ordinary, but that translates to 15 slices! Rather than eating a loaf a day, the same amount of lignans can be found in a single teaspoon of ground flaxseeds.


I've created several videos on flaxseeds for both breast cancer prevention and treatment, including Flaxseeds & Breast Cancer Prevention, Breast Cancer Survival and Lignan Intake, Flaxseeds & Breast Cancer Survival Epidemiological Evidence, and Flaxseeds & Breast Cancer Survival: Clinical Evidence.

What's more, flaxseeds may help with cyclical breast pain (Flaxseeds for Breast Pain), prostate cancer (Flaxseed vs. Prostate Cancer), diabetes (Flaxseeds vs. Diabetes), and hypertension (Flaxseeds for Hypertension).

And if you're wondering Which Are Better: Chia Seeds or Flaxseeds?, get the answer in the video!

The wonders of whole grains are also discussed in Whole Grains May Work as Well as Drugs, Can Oatmeal Reverse Heart Disease?, and Can Oatmeal Help Fatty Liver Disease?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

Does Rye Bread Protect Against Cancer?

Sept 14 Rye Bread copy.jpeg

Previously, I've explored the beneficial effects of flaxseeds on prostate cancer (Flaxseeds vs. Prostate Cancer), as well as breast cancer prevention and survival (Flaxseeds & Breast Cancer Prevention and Breast Cancer Survival & Lignan Intake). The cancer-fighting effect of flaxseeds is thought to be because of the lignans, which are cancer-fighting plant compounds found in red wine, whole grains, greens (cruciferous vegetables), and especially sesame seeds and flaxseeds, the most concentrated source on Earth. But this is based on per unit weight. People eat a lot more grains than seeds. Of the grains people eat, the highest concentration of lignans is found in rye. So, can rye intake decrease the risk of cancer? Theoretically yes, but unlike flaxseeds, it's never been directly put to the test... until now.

In my video Does Rye Bread Protect Against Cancer?, I discuss the evidence that does exist. If you measure the levels of lignans in the bloodstream of women living in a region where they eat lots of rye, the odds of breast cancer in women with the highest levels do seem to be just half that of women with the lowest levels. But lignans are also found in tea and berries, so we couldn't be sure where the protection is coming from. To get around this, researchers decided to measure alkylresorcinol metabolites, a class of phytonutrients relatively unique to whole grains.

Researchers collected urine from women with breast cancer and women without, and the women with breast cancer had significantly lower levels compared to those without. This suggests that women at risk for breast cancer consume significantly lower amounts of whole grains like rye. But if we follow older women in their 50s through 60s, the intake of whole grain products was not associated with risk of breast cancer. A similar result was found in older men for prostate cancer. Is it just too late at that point?

We know from data on dairy that diet in our early life may be important in the development of prostate cancer, particularly around puberty when the prostate grows and matures. If you look at what men were drinking in adolescence, daily milk consumption appeared to triple their risk of advanced prostate cancer later in life. (Learn more about milk and prostate cancer in my video Prostate Cancer and Organic Milk vs. Almond Milk.) So, researchers looked at daily rye bread consumption during adolescence.

Those who consumed rye bread daily as kids did appear to only have half the odds of advanced prostate cancer. This is consistent with immigrant studies suggesting that the first two decades of life may be most important for setting the pattern for cancer development in later life. These findings are certainly important for how we should feed our kids, but if we're already middle-aged, is it too late to change course? To answer this question, researchers in Sweden put it to the test.

Researchers took men with prostate cancer and split them into two groups. One group got lots of rye bread, while the other got lots of high-fiber, but low-lignan, wheat bread. There's been some indirect evidence that rye may be active against prostate cancer--like lower cancer rates in regions with high rye consumption--but it had never been directly investigated... until this study. Biopsies were taken from the subjects' tumors before and after three weeks of bread eating, and the number of cancer cells that were dying off were counted. Though there was no change in the cancer cell clearance of the control bread group, there was a 180% increase in the number of cancer cells being killed off in the rye group. A follow-up study lasting 6 weeks found a 14% decrease in PSA levels, a cancer marker suggesting a shrinkage of the tumor.

The researchers note they used very high rye bread intakes, and it remains to be tested if more normal intake levels would have effects that are of clinical importance. As a sadly typical American, my lack of intimate familiarity of the metric system did not flag the "485 grams" of rye bread a day as far out of the ordinary, but that translates to 15 slices! Rather than eating a loaf a day, the same amount of lignans can be found in a single teaspoon of ground flaxseeds.


I've created several videos on flaxseeds for both breast cancer prevention and treatment, including Flaxseeds & Breast Cancer Prevention, Breast Cancer Survival and Lignan Intake, Flaxseeds & Breast Cancer Survival Epidemiological Evidence, and Flaxseeds & Breast Cancer Survival: Clinical Evidence.

What's more, flaxseeds may help with cyclical breast pain (Flaxseeds for Breast Pain), prostate cancer (Flaxseed vs. Prostate Cancer), diabetes (Flaxseeds vs. Diabetes), and hypertension (Flaxseeds for Hypertension).

And if you're wondering Which Are Better: Chia Seeds or Flaxseeds?, get the answer in the video!

The wonders of whole grains are also discussed in Whole Grains May Work as Well as Drugs, Can Oatmeal Reverse Heart Disease?, and Can Oatmeal Help Fatty Liver Disease?.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Original Link

How Much Water Should We Drink Every Day?

How Much Water Should We Drink Every Day?.jpeg

More than 2000 years ago Hippocrates (460-377 BCE) said, "If we could give every individual the right amount of nourishment and exercise, not too little and not too much, we would have found the safest way to health." What does that mean when it comes to water? Water has been described as a neglected, unappreciated, and under-researched subject, and further complicating the issue, a lot of the papers extolling the need for proper hydration are funded by the bottled water industry.

It turns out the often quoted "drink at least eight glasses of water a day" dictum has little underpinning scientific evidence . Where did that idea come from? The recommendation was traced to a 1921 paper, in which the author measured his own pee and sweat and determined we lose about 3% of our body weight in water a day, or about 8 cups (see How Many Glasses of Water Should We Drink in a Day?). Consequently, for the longest time, water requirement guidelines for humanity were based on just one person.

There is evidence that not drinking enough may be associated with falls and fractures, heat stroke, heart disease, lung disorders, kidney disease, kidney stones, bladder and colon cancer, urinary tract infections, constipation, dry mouth, cavities, decreased immune function and cataract formation. The problem with many of these studies is that low water intake is associated with several unhealthy behaviors, such as low fruit and vegetable intake, more fast-food, less shopping at farmers markets. And who drinks lots of water? People who exercise a lot. No wonder they tend to have lower disease rates!

Only large and expensive randomized trials could settle these questions definitively. Given that water cannot be patented, such trials seem unlikely; who's going to pay for them? We're left with studies that find an association between disease and low water intake. But are people sick because they drink less, or are they drinking less because they're sick? There have been a few large prospective studies in which fluid intake is measured before disease develops. For example, a Harvard study of 48,000 men found that the risk of bladder cancer decreased by 7% for every extra daily cup of fluid we drink. Therefore, a high intake of water--like 8 cups a day--may reduce the risk of bladder cancer by about 50%, potentially saving thousands of lives.

The accompanying editorial commented that strategies to prevent the most prevalent cancers in the West are remarkably straightforward in principle. To prevent lung cancer, quit smoking; to prevent breast cancer, maintain your ideal body weight and exercise; and to prevent skin cancer, stay out of the sun. Now comes this seemingly simple way to reduce the risk of bladder cancer: drink more fluids.

Probably the best evidence we have for a cut off of water intake comes from the Adventist Health Study, in which 20,000 men and women were studied. About one-half were vegetarian, so they were also getting extra water by eating more fruits and vegetables. Those drinking 5 or more glasses of water a day had about half the risk of dying from heart disease compared to those who drank 2 or fewer glasses a day. Like the Harvard study, this protection was found after controlling for other factors such as diet and exercise. These data suggest that it was the water itself that was decreasing risk, perhaps by lowering blood viscosity (blood thickness).

Based on all the best evidence to date, authorities from Europe, the U.S. Institute of Medicine, and the World Health Organization recommend between 2.0 and 2.7 liters (8 to 11 cups) of water a day for women, and 2.5 to 3.7 liters (10 to 15 cups) a day for men. This includes water from all sources, not just beverages. We get about a liter from food and the water our body makes. So this translates into a recommendation for women to drink 4 to 7 cups of water a day and men 6 to 11 cups, assuming only moderate physical activity at moderate ambient temperatures.

We can also get water from all the other drinks we consume, including caffeinated drinks, with the exception of stronger alcoholic drinks like wines and spirits. Beer can leave you with more water than you started with, but wine actively dehydrates you. However, in the cancer and heart disease studies I mentioned above, the benefits were only found with increased water consumption, not other beverages.

I've previously touched on the cognitive benefits of proper hydration here: Does a Drink Of Water Make Children Smarter?

Surprised tea is hydrating? See my video Is Caffeinated Tea Dehydrating?

Surprised that the 8-a-day rested on such flimsy evidence? Unfortunately, so much of what we do in medicine has shaky underpinnings. That's the impetus behind the idea of evidence-based medicine (what a concept!). Ironically, this new movement may itself undermine some of the most effective treatments. See Evidence-Based Medicine or Evidence-Biased?

How else can we reduce our risk of bladder cancer? See Raw Broccoli and Bladder Cancer Survival.

What kind of water? I recommend tap water, which tends to be preferable from a chemical and microbial contamination standpoint. What about buying one of those fancy alkalizing machines? See Alkaline Water: a Scam?

It's so nice to have data on such a fundamental question. We have much to thank the Adventists for. You will see their studies cropping up frequently. See, for example, Plant-Based Diets and Diabetes, The Okinawa Diet: Living to 100, and Evidence-Based Eating.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. Image has been modified.

Original Link

How Much Water Should We Drink Every Day?

How Much Water Should We Drink Every Day?.jpeg

More than 2000 years ago Hippocrates (460-377 BCE) said, "If we could give every individual the right amount of nourishment and exercise, not too little and not too much, we would have found the safest way to health." What does that mean when it comes to water? Water has been described as a neglected, unappreciated, and under-researched subject, and further complicating the issue, a lot of the papers extolling the need for proper hydration are funded by the bottled water industry.

It turns out the often quoted "drink at least eight glasses of water a day" dictum has little underpinning scientific evidence . Where did that idea come from? The recommendation was traced to a 1921 paper, in which the author measured his own pee and sweat and determined we lose about 3% of our body weight in water a day, or about 8 cups (see How Many Glasses of Water Should We Drink in a Day?). Consequently, for the longest time, water requirement guidelines for humanity were based on just one person.

There is evidence that not drinking enough may be associated with falls and fractures, heat stroke, heart disease, lung disorders, kidney disease, kidney stones, bladder and colon cancer, urinary tract infections, constipation, dry mouth, cavities, decreased immune function and cataract formation. The problem with many of these studies is that low water intake is associated with several unhealthy behaviors, such as low fruit and vegetable intake, more fast-food, less shopping at farmers markets. And who drinks lots of water? People who exercise a lot. No wonder they tend to have lower disease rates!

Only large and expensive randomized trials could settle these questions definitively. Given that water cannot be patented, such trials seem unlikely; who's going to pay for them? We're left with studies that find an association between disease and low water intake. But are people sick because they drink less, or are they drinking less because they're sick? There have been a few large prospective studies in which fluid intake is measured before disease develops. For example, a Harvard study of 48,000 men found that the risk of bladder cancer decreased by 7% for every extra daily cup of fluid we drink. Therefore, a high intake of water--like 8 cups a day--may reduce the risk of bladder cancer by about 50%, potentially saving thousands of lives.

The accompanying editorial commented that strategies to prevent the most prevalent cancers in the West are remarkably straightforward in principle. To prevent lung cancer, quit smoking; to prevent breast cancer, maintain your ideal body weight and exercise; and to prevent skin cancer, stay out of the sun. Now comes this seemingly simple way to reduce the risk of bladder cancer: drink more fluids.

Probably the best evidence we have for a cut off of water intake comes from the Adventist Health Study, in which 20,000 men and women were studied. About one-half were vegetarian, so they were also getting extra water by eating more fruits and vegetables. Those drinking 5 or more glasses of water a day had about half the risk of dying from heart disease compared to those who drank 2 or fewer glasses a day. Like the Harvard study, this protection was found after controlling for other factors such as diet and exercise. These data suggest that it was the water itself that was decreasing risk, perhaps by lowering blood viscosity (blood thickness).

Based on all the best evidence to date, authorities from Europe, the U.S. Institute of Medicine, and the World Health Organization recommend between 2.0 and 2.7 liters (8 to 11 cups) of water a day for women, and 2.5 to 3.7 liters (10 to 15 cups) a day for men. This includes water from all sources, not just beverages. We get about a liter from food and the water our body makes. So this translates into a recommendation for women to drink 4 to 7 cups of water a day and men 6 to 11 cups, assuming only moderate physical activity at moderate ambient temperatures.

We can also get water from all the other drinks we consume, including caffeinated drinks, with the exception of stronger alcoholic drinks like wines and spirits. Beer can leave you with more water than you started with, but wine actively dehydrates you. However, in the cancer and heart disease studies I mentioned above, the benefits were only found with increased water consumption, not other beverages.

I've previously touched on the cognitive benefits of proper hydration here: Does a Drink Of Water Make Children Smarter?

Surprised tea is hydrating? See my video Is Caffeinated Tea Dehydrating?

Surprised that the 8-a-day rested on such flimsy evidence? Unfortunately, so much of what we do in medicine has shaky underpinnings. That's the impetus behind the idea of evidence-based medicine (what a concept!). Ironically, this new movement may itself undermine some of the most effective treatments. See Evidence-Based Medicine or Evidence-Biased?

How else can we reduce our risk of bladder cancer? See Raw Broccoli and Bladder Cancer Survival.

What kind of water? I recommend tap water, which tends to be preferable from a chemical and microbial contamination standpoint. What about buying one of those fancy alkalizing machines? See Alkaline Water: a Scam?

It's so nice to have data on such a fundamental question. We have much to thank the Adventists for. You will see their studies cropping up frequently. See, for example, Plant-Based Diets and Diabetes, The Okinawa Diet: Living to 100, and Evidence-Based Eating.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. Image has been modified.

Original Link

Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

Organic versus Conventional: Which has More Nutrients?

Organic versus Conventional - Which has More Nutrients?.jpeg

Are organic foods safer and healthier than conventional alternatives? Those are two separate questions. Some consumers are interested in getting more nutrients; others are more concerned about getting fewer pesticides. Let's do nutrition first.

As seen in my video, Are Organic Foods More Nutritious?, hundreds of studies have been reviewed and researchers didn't find significant differences for most of the traditional nutrients like vitamins and minerals. They concluded that despite the widespread perception that organically produced foods are more nutritious, they didn't find robust evidence to support that perception. They did, however, find higher levels of phenolic phytonutrients in organic.

These so-called "secondary metabolites" of plants are thought to be behind many of the benefits ascribed to eating fruits and vegetables. Organic fruits and vegetables had between 19 and 69% more of a variety of these antioxidant compounds. The theory was that these phytonutrients are created by the plant for its own protection. For example, broccoli releases the bitter compounds like sulforaphane when the plant is chewed to ward off those who might eat it. Bugs take one bite and say, "Ew, this tastes like broccoli!" But pesticide-laden plants are bitten less by bugs and so may be churning out fewer of these compounds. Plants raised organically, on the other hand, are in a fight for their lives and may necessarily have to produce more protection. That was the theory anyway, but we don't have good evidence to back it up. The more likely reason has to do with the fertilizer; plants given high dose synthetic nitrogen fertilizers may divert more resources to growth rather than defense.

These antioxidants may protect the plant, but what about us? More antioxidant phytonutrients are found in organic vegetables and so yes, they displayed more antioxidant activity, but also more antimutagenic activity. Researchers exposed bacteria to a variety of mutagenic chemicals like benzopyrene, the polycyclic aromatic hydrocarbon found in barbecued meat, or IQ, the heterocyclic amine found in grilled/broiled/fried meats (as well as cigarette smoke), and there were fewer DNA mutations in the petri dishes where they added organic vegetables compared to the petri dishes where they added conventional vegetables.

Preventing DNA damage in bacteria is one thing, but what about effects on actual human cells? Organic strawberries may taste better, and have higher antioxidant activity and more phenolic phytonutrients, but what happens when you stack them up head-to-head against human cancer cells? Extracts from organically grown strawberries suppressed the growth of colon cancer cells and breast cancer cells significantly better than extracts from conventional strawberries. Now this was dripping strawberries onto cancer cells growing in a petri dish, but as I showed in Strawberries versus Esophageal Cancer, there are real life circumstances in which strawberries come into direct contact with cancerous and precancerous lesions, and so presumably organic strawberries would work even better, but they haven't yet been tested in clinical trials.

Although in vitro studies show higher antioxidant and antimutagenic activity as well as better inhibition of cancer cell proliferation, clinical studies on the impact of eating organic on human disease simply haven't been done. Based on antioxidant phytonutrient levels, organic produce may be considered 20 to 40% healthier, the equivalent of adding one or two serving's worth to a five-a-day regimen. But organic produce may be 40% more expensive, so for the same money you could just buy the extra servings worth of conventional produce. From a purely nutrients-per-dollar standpoint, it's not clear that organic foods are any better. But people often buy organic foods to avoid chemicals, not because they are more nutritious. For more on the best available science comparing the nutritional content, pesticide risk, heavy metal toxicity, and food poisoning risk of organic versus conventionally raised foods )including practical tips for making your own DIY fruit and veggie wash), see:

I imagine that the reaction to this series will be similar to that for the one I did on GMO foods, riling up critics on both sides of the debate:

More on the nutritional implications of stressed-out plants here:

Production method aside, in vitro, Which Fruit Fights Cancer Better?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Organic versus Conventional: Which has More Nutrients?

Organic versus Conventional - Which has More Nutrients?.jpeg

Are organic foods safer and healthier than conventional alternatives? Those are two separate questions. Some consumers are interested in getting more nutrients; others are more concerned about getting fewer pesticides. Let's do nutrition first.

As seen in my video, Are Organic Foods More Nutritious?, hundreds of studies have been reviewed and researchers didn't find significant differences for most of the traditional nutrients like vitamins and minerals. They concluded that despite the widespread perception that organically produced foods are more nutritious, they didn't find robust evidence to support that perception. They did, however, find higher levels of phenolic phytonutrients in organic.

These so-called "secondary metabolites" of plants are thought to be behind many of the benefits ascribed to eating fruits and vegetables. Organic fruits and vegetables had between 19 and 69% more of a variety of these antioxidant compounds. The theory was that these phytonutrients are created by the plant for its own protection. For example, broccoli releases the bitter compounds like sulforaphane when the plant is chewed to ward off those who might eat it. Bugs take one bite and say, "Ew, this tastes like broccoli!" But pesticide-laden plants are bitten less by bugs and so may be churning out fewer of these compounds. Plants raised organically, on the other hand, are in a fight for their lives and may necessarily have to produce more protection. That was the theory anyway, but we don't have good evidence to back it up. The more likely reason has to do with the fertilizer; plants given high dose synthetic nitrogen fertilizers may divert more resources to growth rather than defense.

These antioxidants may protect the plant, but what about us? More antioxidant phytonutrients are found in organic vegetables and so yes, they displayed more antioxidant activity, but also more antimutagenic activity. Researchers exposed bacteria to a variety of mutagenic chemicals like benzopyrene, the polycyclic aromatic hydrocarbon found in barbecued meat, or IQ, the heterocyclic amine found in grilled/broiled/fried meats (as well as cigarette smoke), and there were fewer DNA mutations in the petri dishes where they added organic vegetables compared to the petri dishes where they added conventional vegetables.

Preventing DNA damage in bacteria is one thing, but what about effects on actual human cells? Organic strawberries may taste better, and have higher antioxidant activity and more phenolic phytonutrients, but what happens when you stack them up head-to-head against human cancer cells? Extracts from organically grown strawberries suppressed the growth of colon cancer cells and breast cancer cells significantly better than extracts from conventional strawberries. Now this was dripping strawberries onto cancer cells growing in a petri dish, but as I showed in Strawberries versus Esophageal Cancer, there are real life circumstances in which strawberries come into direct contact with cancerous and precancerous lesions, and so presumably organic strawberries would work even better, but they haven't yet been tested in clinical trials.

Although in vitro studies show higher antioxidant and antimutagenic activity as well as better inhibition of cancer cell proliferation, clinical studies on the impact of eating organic on human disease simply haven't been done. Based on antioxidant phytonutrient levels, organic produce may be considered 20 to 40% healthier, the equivalent of adding one or two serving's worth to a five-a-day regimen. But organic produce may be 40% more expensive, so for the same money you could just buy the extra servings worth of conventional produce. From a purely nutrients-per-dollar standpoint, it's not clear that organic foods are any better. But people often buy organic foods to avoid chemicals, not because they are more nutritious. For more on the best available science comparing the nutritional content, pesticide risk, heavy metal toxicity, and food poisoning risk of organic versus conventionally raised foods )including practical tips for making your own DIY fruit and veggie wash), see:

I imagine that the reaction to this series will be similar to that for the one I did on GMO foods, riling up critics on both sides of the debate:

More on the nutritional implications of stressed-out plants here:

Production method aside, in vitro, Which Fruit Fights Cancer Better?

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link