Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

Why Is Milk Consumption Associated with More Bone Fractures?

Why Is Milk Consumption Associated with More Bone Fractures?.jpg

Milk is touted to build strong bones, but a compilation of all the best studies found no association between milk consumption and hip fracture risk, so drinking milk as an adult might not help bones, but what about in adolescence? Harvard researchers decided to put it to the test.

Studies have shown that greater milk consumption during childhood and adolescence contributes to peak bone mass, and is therefore expected to help avoid osteoporosis and bone fractures in later life. But that's not what researchers have found (as you can see in my video Is Milk Good for Our Bones?). Milk consumption during teenage years was not associated with a lower risk of hip fracture, and if anything, milk consumption was associated with a borderline increase in fracture risk in men.

It appears that the extra boost in total body bone mineral density from getting extra calcium is lost within a few years; even if you keep the calcium supplementation up. This suggests a partial explanation for the long-standing enigma that hip fracture rates are highest in populations with the greatest milk consumption. This may be an explanation for why they're not lower, but why would they be higher?

This enigma irked a Swedish research team, puzzled because studies again and again had shown a tendency of a higher risk of fracture with a higher intake of milk. Well, there is a rare birth defect called galactosemia, where babies are born without the enzymes needed to detoxify the galactose found in milk, so they end up with elevated levels of galactose in their blood, which can causes bone loss even as kids. So maybe, the Swedish researchers figured, even in normal people that can detoxify the stuff, it might not be good for the bones to be drinking it every day.

And galactose doesn't just hurt the bones. Galactose is what scientists use to cause premature aging in lab animals--it can shorten their lifespan, cause oxidative stress, inflammation, and brain degeneration--just with the equivalent of like one to two glasses of milk's worth of galactose a day. We're not rats, though. But given the high amount of galactose in milk, recommendations to increase milk intake for prevention of fractures could be a conceivable contradiction. So, the researchers decided to put it to the test, looking at milk intake and mortality as well as fracture risk to test their theory.

A hundred thousand men and women were followed for up to 20 years. Researchers found that milk-drinking women had higher rates of death, more heart disease, and significantly more cancer for each glass of milk. Three glasses a day was associated with nearly twice the risk of premature death, and they had significantly more bone and hip fractures. More milk, more fractures.

Men in a separate study also had a higher rate of death with higher milk consumption, but at least they didn't have higher fracture rates. So, the researchers found a dose dependent higher rate of both mortality and fracture in women, and a higher rate of mortality in men with milk intake, but the opposite for other dairy products like soured milk and yogurt, which would go along with the galactose theory, since bacteria can ferment away some of the lactose. To prove it though, we need a randomized controlled trial to examine the effect of milk intake on mortality and fractures. As the accompanying editorial pointed out, we better find this out soon since milk consumption is on the rise around the world.

What can we do for our bones, then? Weight-bearing exercise such as jumping, weight-lifting, and walking with a weighted vest or backpack may help, along with getting enough calcium (Alkaline Diets, Animal Protein, & Calcium Loss) and vitamin D (Resolving the Vitamin D-Bate). Eating beans (Phytates for the Prevention of Osteoporosis) and avoiding phosphate additives (Phosphate Additives in Meat Purge and Cola) may also help.

Maybe the galactose angle can help explain the findings on prostate cancer (Prostate Cancer and Organic Milk vs. Almond Milk) and Parkinson's disease (Preventing Parkinson's Disease With Diet).

Galactose is a milk sugar. There's also concern about milk proteins (see my casomorphin series) and fats (The Saturated Fat Studies: Buttering Up the Public and Trans Fat in Meat and Dairy) as well as the hormones (Dairy Estrogen and Male Fertility, Estrogen in Meat, Dairy, and Eggs and Why Do Vegan Women Have 5x Fewer Twins?).

Milk might also play a role in diabetes (Does Casein in Milk Trigger Type 1 Diabetes, Does Bovine Insulin in Milk Trigger Type 1 Diabetes?) and breast cancer (Is Bovine Leukemia in Milk Infectious?, The Role of Bovine Leukemia Virus in Breast Cancer, and Industry Response to Bovine Leukemia Virus in Breast Cancer).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Why Is Milk Consumption Associated with More Bone Fractures?

Why Is Milk Consumption Associated with More Bone Fractures?.jpg

Milk is touted to build strong bones, but a compilation of all the best studies found no association between milk consumption and hip fracture risk, so drinking milk as an adult might not help bones, but what about in adolescence? Harvard researchers decided to put it to the test.

Studies have shown that greater milk consumption during childhood and adolescence contributes to peak bone mass, and is therefore expected to help avoid osteoporosis and bone fractures in later life. But that's not what researchers have found (as you can see in my video Is Milk Good for Our Bones?). Milk consumption during teenage years was not associated with a lower risk of hip fracture, and if anything, milk consumption was associated with a borderline increase in fracture risk in men.

It appears that the extra boost in total body bone mineral density from getting extra calcium is lost within a few years; even if you keep the calcium supplementation up. This suggests a partial explanation for the long-standing enigma that hip fracture rates are highest in populations with the greatest milk consumption. This may be an explanation for why they're not lower, but why would they be higher?

This enigma irked a Swedish research team, puzzled because studies again and again had shown a tendency of a higher risk of fracture with a higher intake of milk. Well, there is a rare birth defect called galactosemia, where babies are born without the enzymes needed to detoxify the galactose found in milk, so they end up with elevated levels of galactose in their blood, which can causes bone loss even as kids. So maybe, the Swedish researchers figured, even in normal people that can detoxify the stuff, it might not be good for the bones to be drinking it every day.

And galactose doesn't just hurt the bones. Galactose is what scientists use to cause premature aging in lab animals--it can shorten their lifespan, cause oxidative stress, inflammation, and brain degeneration--just with the equivalent of like one to two glasses of milk's worth of galactose a day. We're not rats, though. But given the high amount of galactose in milk, recommendations to increase milk intake for prevention of fractures could be a conceivable contradiction. So, the researchers decided to put it to the test, looking at milk intake and mortality as well as fracture risk to test their theory.

A hundred thousand men and women were followed for up to 20 years. Researchers found that milk-drinking women had higher rates of death, more heart disease, and significantly more cancer for each glass of milk. Three glasses a day was associated with nearly twice the risk of premature death, and they had significantly more bone and hip fractures. More milk, more fractures.

Men in a separate study also had a higher rate of death with higher milk consumption, but at least they didn't have higher fracture rates. So, the researchers found a dose dependent higher rate of both mortality and fracture in women, and a higher rate of mortality in men with milk intake, but the opposite for other dairy products like soured milk and yogurt, which would go along with the galactose theory, since bacteria can ferment away some of the lactose. To prove it though, we need a randomized controlled trial to examine the effect of milk intake on mortality and fractures. As the accompanying editorial pointed out, we better find this out soon since milk consumption is on the rise around the world.

What can we do for our bones, then? Weight-bearing exercise such as jumping, weight-lifting, and walking with a weighted vest or backpack may help, along with getting enough calcium (Alkaline Diets, Animal Protein, & Calcium Loss) and vitamin D (Resolving the Vitamin D-Bate). Eating beans (Phytates for the Prevention of Osteoporosis) and avoiding phosphate additives (Phosphate Additives in Meat Purge and Cola) may also help.

Maybe the galactose angle can help explain the findings on prostate cancer (Prostate Cancer and Organic Milk vs. Almond Milk) and Parkinson's disease (Preventing Parkinson's Disease With Diet).

Galactose is a milk sugar. There's also concern about milk proteins (see my casomorphin series) and fats (The Saturated Fat Studies: Buttering Up the Public and Trans Fat in Meat and Dairy) as well as the hormones (Dairy Estrogen and Male Fertility, Estrogen in Meat, Dairy, and Eggs and Why Do Vegan Women Have 5x Fewer Twins?).

Milk might also play a role in diabetes (Does Casein in Milk Trigger Type 1 Diabetes, Does Bovine Insulin in Milk Trigger Type 1 Diabetes?) and breast cancer (Is Bovine Leukemia in Milk Infectious?, The Role of Bovine Leukemia Virus in Breast Cancer, and Industry Response to Bovine Leukemia Virus in Breast Cancer).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

How Well Do Cholesterol-Lowering Drugs Actually Work?

NF-Nov8 The Actual Benefit  copy.jpg

One of the reasons people may undervalue diet and lifestyle changes is an overconfidence in the ability of pills and procedures to prevent disease. For example, people tend to wildly overestimate the power of things like mammograms and colonoscopies to prevent deaths from breast and bowel cancer, or the power of drugs like Fosamax to prevent hip fractures, or the power of cholesterol drugs to prevent fatal heart attacks. Patients believe statin drugs like Lipitor are about 100 times more effective than they actually are in preventing heart attacks. Studies show most people wouldn't take multiple blood pressure medications if they knew the truth.

For most people, the chance of benefit is normally less than 5 percent over five years for cholesterol, blood pressure, and blood thinning drugs. Patients don't want to take drugs unless they have at least a one in five chance--even those who just had a heart attack. It's no wonder, then, that doctors seldom share these figures. Informing patients of the percentage chance of benefit from preventive drug strategies would likely substantially reduce the likelihood that patients would agree to take the drugs every day for the rest of their lives.

For the individual, this is unlikely to be detrimental; after all, there's a 95 percent chance it won't do anything for them. But for the population at large, it would make a difference, so doctors and drug companies oversell the benefits by conveniently not mentioning how tiny they actually are, knowing most patients wouldn't take them if doctors divulged the truth. To practice non-lifestyle medicine is to practice deceptive medicine.

The best that cholesterol-lowering statin drugs appear to do is an absolute risk reduction of 3.1 percent over six years. If Dr. Esselstyn's work can be replicated in a randomized, controlled trial, then a whole foods plant-based diet will have been shown to work twenty times better, an absolute risk reduction of 60 percent after less than four years. In Esselstyn's study, 99.4 percent of high-risk patients that stuck with the diet avoided major cardiac events, such as death from heart attack.

When we have to decide whether we want to go diet versus drugs, we're not making a choice between eating healthy to prevent a heart attack or taking a pill to prevent a heart attack. Because in 97 percent of cases in the near-term, pills don't do anything. We're risking side effects for nothing, whereas if we treat the underlying root cause of the disease by eating a healthy, cholesterol-free diet, we may even reverse the progression of the disease, as seen in my video The Actual Benefit of Diet vs. Drugs.

If we stop eating an artery-clogging diet, our bodies can start dissolving that plaque away, opening up arteries in some cases without drugs or surgery. A healthy whole food plant-based diet by itself may work 20 times better than drugs to combat our #1 killer.

Now that's something doctors may want to tell their patients.

Yes, an ounce of prevention is worth a pound of cure, but a pound isn't that heavy--why change our diet and lifestyle when we can just wait and let modern medicine fix us up? Turns out we overestimate the efficacy of treatment as well, the subject of my video Why Prevention is Worth a Ton of Cure.

Sometimes preventive medicine procedures can even be harmful. See Cancer Risk From CT Scan Radiation and Do Dental X-Rays Cause Brain Tumors?

I've previously noted how an honest physician-patient interaction might go in Fully Consensual Heart Disease Treatment, Optimal Diet: Just Give it To Me Straight, Doc and Disclosing Conflicts of Interest in Medical Research. What should we be saying? See: What Diet Should Physician's Recommend?

So why don't more doctors do it? See Barriers to Heart Disease Prevention and Find Out If Your Doctor Takes Drug Company Money.

More on Dr. Esselstyn's heart disease reversal study in: Evidence-Based Medicine or Evidence-Biased?

Of course then there's just the brute force method: Kempner Rice Diet: Whipping Us Into Shape.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: [akz] © 123RF.com

Original Link

Dr. Greger’s 2015 Live Year-in-Review Presentation

Food as Medicine

View my new live presentation here: Food as Medicine: Preventing and Treating the Most Dreaded Diseases with Diet

Every year I scour the world's scholarly literature on clinical nutrition, pulling together what I find to be the most interesting, practical, and groundbreaking science on how to best feed ourselves and our families. I start with the thousands of papers published annually on nutrition (27,000 this year--a new record!) and, thanks to a crack team of volunteers (and now staff!), I'm able to whittle those down (to a mere 8,000 this year). They are then downloaded, categorized, read, analyzed, and churned into the few hundred short videos. This allows me to post new videos and articles every day, year-round, to NutritionFacts.org. This certainly makes the site unique. There's no other science-based source for free daily updates on the latest discoveries in nutrition. The problem is that the amount of information can be overwhelming.

Currently I have more than a thousand videos covering 1,931 nutrition topics. Where do you even begin? Many have expressed their appreciation for the breadth of material, but asked that I try to distill it into a coherent summary of how best to use diet to prevent and treat chronic disease. I took this feedback to heart and in 2012 developed Uprooting the Leading Causes of Death, which explored the role diet may play in preventing, arresting, and even reversing our top 15 killers. Not only did it rise to become one of the Top 10 Most Popular Videos of 2012, it remains my single most viewed video to date, watched over a million times (NutritionFacts.org is now up to more than 1.5 million hits a month!).

In 2013 I developed the sequel, More Than an Apple a Day, in which I explored the role diet could play in treating some of our most common conditions. I presented it around the country and it ended up #1 on our Top 10 Most Popular Videos of 2013. Then in 2014 I premiered the sequel-sequel, From Table to Able, in which I explored the role diet could play in treating some of our most disabling diseases, landing #1 on our Top 10 Most Popular Videos of 2014.

Every year I wonder how I'm going to top the year before. Knowing how popular these live presentations can be and hearing all the stories from folks about what a powerful impact they can have on people's lives, I put my all into this new 2015 one. I spent more time putting together this presentation than any other in my life. It took me an entire month, and when you see it I think you'll appreciate why.

This year, I'm honored to bring you Food as Medicine, in which I go through our most dreaded diseases--but that's not even the best part! I'm really proud of what I put together for the ending. I spend the last 20 minutes or so (starting at 56:22) going through a thought experiment that I'm hoping everyone will find compelling. I think it may be my best presentation ever. You be the judge.

You can watch it at no cost online, but it is also available on DVD through my website or on Amazon. If you want to share copies with others, I have a five for $40 special (enter coupon code 5FOR40FAM). All proceeds from the sales of all my books, DVDs, downloads, and presentations go to the 501c3 nonprofit charity that keeps NutritionFacts.org free for all, for all time. If you want to support this initiative to educate millions about eradicating dietary diseases, please consider making a donation.

After you've watched the new presentation, make sure you're subscribed to get my video updates daily, weekly, or monthly to stay on top of all the latest.

-Michael Greger

Original Link

Peeks Behind the Egg Industry Curtain

NF-Mar19 Who Says Eggs Aren't Healthy or Safe?.jpg

The American Egg Board is a promotional marketing board appointed by the U.S. government whose mission is to "increase demand for egg and egg products on behalf of U.S. egg producers." If an individual egg company wants to run an ad campaign, they can say pretty much whatever they want. But if an egg corporation wants to dip into the 10 million dollars the American Egg Board sets aside for advertising every year, because the board is overseen by the federal government, corporations are not allowed to lie with those funds. This leads to quite revealing exchanges between egg corporations that want to use that money and the USDA on what egg companies can and cannot say about eggs.

Thanks to the Freedom of Information Act I was able to get my hands on some of those emails. Of course a lot of what I got were pages with nearly all of the text blacked out (you can see these in my video, Who Says Eggs Aren't Healthy or Safe?). But I did find some illuminating correspondence. For example, one email shows an egg company trying to put out a brochure on healthy snacking for kids. But because of existing laws against false and misleading advertising, the head of the USDA's poultry research and promotion programs reminds the company that eggs or egg products cannot be couched as being healthy or nutritious. "The words nutritious and healthy carry certain connotations, and because eggs have the amount of cholesterol they do, plus the fact that they're not low in fat, [the words healthy and nutritious] are problematic." This is the United States Department of Agriculture saying this!

However, the USDA official helpfully suggests, "I believe you can say something that's just as strong if not stronger, that is 'naturally nutrient-dense.'" Why can we say eggs are nutrient-dense but not nutritious? Because there's no legal definition of nutrient-dense. We can say Twinkies and Coca Cola are nutrient dense, but legally, we can't say something is nutritious unless it's actually... nutritious.

For example, the egg industry wanted to run an ad calling eggs a nutritional powerhouse that aids in weight loss. The USDA had to remind the industry that they can't portray eggs as a diet food because of the fat and cholesterol content. In fact, eggs have nearly twice the calories of anything that can be called "low-calorie."

"Nutritional powerhouse" can't be used either. Fine, the industry said, they'll move to plan B, and headline the ad "Egg-ceptional Nutrition." They couldn't say that either because, again, given the saturated fat and cholesterol you can't legally call eggs nutritious. So the headline ended up as, "Find true satisfaction," and instead of weight loss they had to go with "can reduce hunger." The USDA congratulated them on their cleverness. Yes, a food that when eaten can reduce hunger--what a concept!

They can't even say eggs are "relatively" low in calories. Can't say eggs are low in saturated fat--they're not. Can't say they're relatively low in fat, they're not. Can't even call them a rich source of protein, because, according to the USDA, they're not.

It's illegal to advertise that eggs pack a nutritional wallop, or that they have a high nutritional content. Eggs have so much cholesterol, we can't even say they "contribute nutritionally." Can't say eggs are "healthful," certainly can't say they're "healthy." Can't even say eggs contribute "healthful components."

Since we can't say eggs are a healthy start to the day, the USDA suggests a "satisfying start." Egg corporations can't call eggs a healthy ingredient, but they can call eggs a "recognizable" ingredient. Can't truthfully say eggs are good for us, either. By law, according to the USDA, the egg industry "needs to steer clear of words like 'healthy' or 'nutritious.'"

For a food to be labeled "healthy" under FDA rules, it has to be low in saturated fat (eggs fail that criteria) and have less than 90mg of cholesterol per serving (even half an egg fails that test). For the same reason we can't tout ice cream for strong bones, we can't say eggs are healthy because they exceed the threshold for cholesterol.

Egg corporations aren't even allowed to say things like "Eggs are an important part of a well balanced, healthy diet" on an egg carton because it would be considered misleading according to the USDA's National Egg Supervisor, since eggs contain significant amounts of fat and cholesterol and therefore can contribute to the leading killer in the United States, heart disease.

The industry can't afford to tell the truth about the eggs, or even the hens that lay them. The industry crams five to ten birds in cages the size of a file cabinet their whole lives, but when providing footage to the media, the American Egg Board instructs, "do not show multiple birds in cages--they look too crowded and open us up to activist criticism."

Not only is the industry barred from saying eggs are healthy, they can't even refer to eggs as safe because more than a hundred thousand Americans are food poisoned by Salmonella from eggs every year.

The egg board's response to this egg-borne epidemic is that Salmonella is a naturally occurring bacterium. An internal egg industry memo didn't think that should necessarily be the key message, fearing that "it may be counterproductive by implying there is no avoiding Salmonella in eggs aside from avoiding eggs altogether."

The food poisoning risk is why the American Egg Board can't even mention anything but eggs cooked hard and dry. No soft-boiled, no over-easy, no sunny-side up--because of the Salmonella risk. The American Egg Board's own research showed that the sunny-side up cooking method should be considered "unsafe."

In light of bird flu viruses, both the white and yolk must be cooked firm. The VP of marketing for the Egg Board complained to the USDA saying they'd "really like to not have to dictate that the yolks are firm," and cites a Washington Post article saying runny yolks may be safe for everyone except pregnant women, infants, elderly, or those with chronic disease. It turns out it was a misquote--eggs can't be considered safe for anyone.

Instead of safe, they can call eggs "fresh," the USDA marketing service helpfully suggests. But they can't call eggs safe, and they can't say eggs are "safe to eat." They can't even mention safety at all.

Wait a second, not only can eggs not be called healthy they can't even be called safe? Says who? Says the United States Department of Agriculture.

For more peeks behind the egg industry curtain see:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: U.S. Department of Agriculture / Flickr

Original Link

How Beans Help Our Bones

NF-Nov20 How Beans Help Our Bones.jpg

Health authorities from all over the world universally recommend increasing the consumption of whole grains and legumes--beans, split peas, chickpeas, and lentils--for health promotion. But what about the phytates?

Phytate is a naturally occurring compound found in all plant seeds (like beans, grains, and nuts) that over the decades has been maligned as mineral absorption inhibitors. That's why, for example, one hears advice to roast, sprout, or soak your nuts to get rid of the phytates so we can absorb more minerals, like calcium.

The concern about phytates and bone health arose from a series of laboratory experiments performed on puppies published in 1949, which suggested that high phytate diets have a bone softening and anti-calcifying effect. Subsequent studies on rats, in which they fed them the equivalent of ten loaves of bread a day, "confirmed" phytate's status as a so-called anti-nutrient. But more recently, in the light of actual human data, phytate's image has undergone a makeover.

A recent study published in the Journal of Medicinal Food asked a simple question: Do people who avoid high phytate foods--legumes, nuts, and whole grains--have better bone mineral density? No. Those that consumed more high-phytate foods actually had stronger bones, as measured in the heel, spine and hip. The researchers conclude that dietary phytate consumption had protective effects against osteoporosis and that low phytate consumption should actually be what's considered an osteoporosis risk factor.

A follow-up study, measuring phytate levels flowing through women's bodies and following bone mass over time, found the same thing: women with the highest phytate levels had the lowest levels of bone loss in the spine and hip. Those who ate the most phytates were also estimated to have a significantly lower risk of major fracture, and a lower risk of hip fracture specifically.

This is consistent with reports that phytate can inhibit the dissolution of bone similar to anti-osteoporosis drugs like Fosamax. Phytates don't have the side effects, though, such as osteonecrosis (bone death) associated with that class of drugs. People take these drugs to protect their bones, but by doing so may also risk rotting them away (See Phytates for the Prevention of Osteoporosis).

Eating healthy can help us avoid other drugs as well. See, for example:

Beans might not just help our skeleton last longer, but the rest of us as well. See Increased Lifespan From Beans.

How might one boost mineral absorption? See New Mineral Absorption Enhancers Found.

Alkaline Diets, Animal Protein, & Calcium Loss is another surprising video on bone health.

And more on the benefits of phytates can be found in my videos:

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Image Credit: Asja Boros / Flickr

Original Link

What Do Meat Purge and Cola Have in Common?

NF-Oct9 Phosphate Additives in Meat Purge and Cola.jpg

In my video, Treating Kidney Failure Through Diet, I profiled research suggesting that the use of a plant-based diet for patients with kidney failure would be beneficial. An important function of our kidneys is to filter out excess phosphorus from our bloodstream, so a decline in kidney function can lead to the build-up of phosphorus in our bodies. This in turn can cause something called metastatic calcification, where our heart valves and muscles and other parts of the body can buildup mineral deposits, eventually potentially resulting in bad things like skin necrosis, gangrene, and amputations. Therefore, controlling dietary phosphorus intake is the lynchpin of successful prevention of metastatic calcification. While both plant foods and animal foods have phosphorus, our bodies seem better able to handle phosphorus excretion from plants, so a plant-based diet may help protect against this dreadful condition.

However, we're beginning to realize that absorbing too much phosphorus isn't good for anyone, even those with healthy kidneys. Having high levels in our blood has been found to be an independent predictor of heart attacks and mortality in the general population, increasing the risk not only of kidney failure, but also of heart failure, heart attacks, coronary death, and overall death. Dietary intake of phosphate is an important matter not just for persons with kidney disease, but for everybody. It's thought to cause damage to blood vessels, to accelerate the aging process, and even, potentially, to hurt our bones by contributing to osteoporosis via a disruption of hormonal regulation. The estimated average requirement of phosphorus is less than 600 mg a day, but the estimated average intake in the United States is nearly twice that. How do we stay away from too much of the stuff?

In the video, Phosphate Additives in Meat Purge and Cola, we can see the different levels of phosphorus in different foods. It looks like many plant foods have as much phosphorus as many animal foods. So why are plant-based diets so effective in treating kidney failure patients? Because most of the phosphorus in plant foods is found in the form of phytic acid, which we can't digest. Therefore, while plant and animal foods may have similar phosphate contents, the amount that is bioavailable differs. In plant foods, the bioavailability of phosphates is usually less than 50%, while the bioavailability of most animal products is up around 75%.

So when we adjust for how much actually gets into our system, plant foods are significantly better. It's like the absorption of heme and non-heme iron: our bodies can protect themselves from absorbing too much plant-based iron, but can't stop excess muscle and blood-based (heme) iron from animals slipping through the intestinal wall (see my video Risk Associated With Iron Supplements).

The worst kind of phosphorus is in the form of phosphate additives (which are absorbed nearly 100%) that are added, for example, to cola drinks. Why is phosphate added to cola? Without the added phosphate, so many glycotoxins would be produced that the beverage would turn pitch black (see my video on Glycotoxins). Thus, cola drinks owe their brown color to phosphate.

Phosphate additives play an especially important role in the meat industry, where they are used as preservatives for the same reason: to enhance a meat product's color. Just like the dairy industry adds aluminum to cheese, the meat and poultry industries "enhance" their products by injecting them with phosphates. If one looks at meat industry trade journals and can get past all the macabre ads for "head dropping robots for the kill floor," you'll see all ad after ad for injection machines. Why? Because of "increased profitability." Enhanced meats have better color and less "purge."

Purge is a term used to describe the liquid that seeps from flesh as it ages. Many consumers find this unattractive, so the industry views phosphate injection as a win-win. When chicken is injected with phosphates, the "consumer benefits through the perception of enhanced quality," and the processor benefits from increased yield because they just pump it up with water and they sell it by the pound. The problem is that it can boost phosphorus levels in meat nearly 70%, a "real and insidious danger" not only for kidney patients, but for us all.

Another toxic addition to alter the color of meat is arsenic-containing drugs fed directly to chickens (see my video Arsenic in Chicken). Carbon monoxide is used to keep red meat red, anthoxanthins keep salmon pink (Artificial Coloring in Fish) and titanium dioxide is used to whiten processed foods (Titanium Dioxide & Inflammatory Bowel Disease). I'm amazed by the risks the food industry will take to alter food cosmetically (more on this in Artificial Food Colors and ADHD).

There are other harmful additives in soda as well (Is Sodium Benzoate Harmful? and Diet Soda and Preterm Birth).

What else is in poultry purge (chicken "juice")? Find out in my video, Phosphate Additives in Chicken.

-Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death, More Than an Apple a Day, and From Table to Able.

Images thanks to Michael Scheltgen / Flickr

Original Link

Does Animal Protein Cause Osteoporosis?

NF-July29 Alkaline Diets, Meat, and Calcium Loss.jpg

For most of the last century, a prevailing theory within the field of nutrition was that by eating acid-forming foods such as meat, we were, in essence, at risk of peeing our bones down the toilet. And no wonder! Experiments dating back to 1920 showed over and over that if we add meat to our diet we get a big spike in the amount of calcium being lost in the urine.

And this made total sense. We had known since 1912 that meat was acid-forming within the body, and how do we buffer acid? What are in antacid (anti-acid) pills like Tums? Calcium compounds.

Meat and eggs have a lot of sulphur-containing amino acids (two to five times more than grains and beans) that are metabolized into sulphuric acid, which the body buffers with calcium compounds. And where is calcium stored in the body? The skeleton. So the thinking was that every time we ate a steak, our body would pull calcium from our bones, bit by bit, and over time this could lead to osteoporosis. Based on 26 such studies, for every 40 grams of protein we add to our daily diet, we pee out an extra 50 mg of calcium. We only have about two pounds of calcium in our skeleton, so the loss of 50 grams a day would mean losing close to 2% of our bone calcium every year. By the end of the 20th century, there was little doubt that acid-forming diets would dissolve our bones away.

But if we actually look at the studies done on protein intake and bone health, that's not what we find. So, where's the flaw in the logic? Meat leads to acid, which leads to calcium loss, which leads to bone loss, right?

Well, it's uncontroversial that protein results in greater calcium excretion, but we've just been assuming it's coming from the bone--where else could the extra calcium dumped in our urine be coming from but our bones?

One study appeared to solve the mystery. An intrepid group of researchers tried feeding a group of volunteers radioactive calcium and then put them on a high protein diet. What happens when we put people on a high protein diet? The amount of calcium in their urine shoots up, and indeed that's just what happened. But here's the big question, was that extra calcium in their urine radioactive or not? To everyone's surprise, it was radioactive. This meant that the excess calcium in their urine was coming from their diet, not from their bones.

What seemed to be happening is that the excess protein consumption boosted calcium absorption, from down around 19% up to 26%. All of a sudden there was all this extra calcium in the blood, so presumably the kidneys are like "whoa, what are we going to do with it all?" So they dump it into the urine. 90% of the extra calcium in the urine after eating a steak doesn't appear to be coming from our bones but from our diet. We're not sure why protein boosts calcium absorption. Maybe protein increases the solubility of calcium by stimulating stomach acid production? Whatever the reason, there was indeed more calcium lost, but also more calcium gained such that in the end, most of that extra calcium is accounted for. In effect, more calcium is lost in the urine stream, but it may be compensated by less loss of calcium through the fecal stream.

This was repeated with even more extreme diets--an acid-forming five-burgers-a-day-worth-of-animal protein diet that limited fruits and vegetables versus an alkaline diet emphasizing fruits and vegetables. More calcium in the urine on burgers, but significantly greater calcium absorption, such that at the end it was pretty much a wash.

Other studies have also since supported this interpretation. Here's an ingenious one: Feed people a high animal protein diet but add in an alkali salt to neutralize the acid. The old thinking would predict that there would be no calcium loss since there is no excess acid to buffer, but no, even though the acid load was neutralized, there was still the excess urinary calcium, consistent with the radioactive isotope study, challenging the "long-standing dogma that animal protein consumption results in a mild acidosis promoting the increased excretion of calcium."

So if our body isn't buffering the acid formed from our diet with our bones, how is it neutralizing the acid? Maybe with our muscles. Alkaline diets may protect our muscle mass! I cover that in my video Testing Your Diet with Pee and Purple Cabbage.

Now the boost in calcium absorption can only compensate if we're taking enough in. For example, dietary acid load may be associated with lower bone mineral density in those getting under 800mg a day. Plant Protein is Preferable to animal protein for a variety of reasons (tends to have less methionine, is less IGF-1 promoting, etc.), but it's not clear how much of an advantage it has when it comes to bone health.

I previously touched on this topic in my video Is Protein Bad to the Bone? But I promised I'd take a deeper dive, hence my video Alkaline Diets, Meat & Calcium Loss.

-Michael Greger, M.D.

Note to chemistry geeks: Yes, I know it's the calcium salt anions that actually do the buffering (carbonate in Tums and phosphate in bones), but I'm trying my best to simplify for a largely lay audience. I'll make it up to you with some kitchen chemistry (actually bathroom chemistry!) in my Testing Your Diet video.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live year-in-review presentations Uprooting the Leading Causes of Death and More Than an Apple a Day.

Image Credit: PD Art / Wikimedia Commons

Original Link