What Is the Cause of ALS?

What Is the Cause of ALS?.jpeg

Lou Gehrig's disease, known as amyotrophic lateral sclerosis or ALS, strikes healthy, middle-aged people seemingly at random. Of the major neurodegenerative diseases, it has the least hope for treatment and survival. Although mental capabilities stay intact, ALS paralyzes people, often from the outside in, and most patients die within three years when they can no longer breathe or swallow. At any given time, an estimated 30,000 are fighting for their life with it in this country. We each have about a 1 in 400 chance of developing this dreaded disease.

ALS is more common than generally recognized, with an incidence rate now close to that of multiple sclerosis. What causes it? 50 years ago scientists found that the rate of ALS among the indigenous peoples on the island of Guam was 100 times that found in the rest of the world, potentially offering a clue into the cause of the disease. So instead of 1 in 400, in some villages in Guam, 1 in 3 adults died of the disease!

Cycad trees were suspected, since the powdered seeds were a dietary staple of the natives and there were reports of livestock showing neurological disease after eating from it. And indeed, a new neurotoxin was found in the seeds, called BMAA. Maybe that's what was causing such high levels of ALS? But the amount of BMAA in the seeds people ate was so small that it was calculated that people would have to eat a thousand kilograms a day to get a toxic dose--that's around a ton of seeds daily. So, the whole cycad theory was thrown out and the trail went cold.

But then famed neurologist Oliver Sachs and colleagues had an idea. Cycad seeds were not all the natives ate. They also ate fruit bats (also known as flying foxes) who ate Cycad tree seeds. So maybe this is a case of biomagnification up the food chain, as about a "tons" worth of BMAA does accumulate in the flesh of flying foxes.

The final nail in the coffin was the detection of high levels of BMMA in the brains of six out of six native victims of the disease on autopsy, but not in control brains of healthy people that died. So with the final puzzle piece apparently in place, the solution was found to this mysterious cluster on some exotic tropical isle of ALS/PDC, so-called because the form of ALS attacking people in Guam also had signs of Parkinson's disease and dementia, so they called it ALS parkinsonism dementia complex. So when the researchers were choosing a comparison group control brains, they also included two cases of Alzheimer's disease. But these brains had BMAA in their brains too. And not only that, but these were Alzheimer's victims in Canada, on the opposite side of the globe. So the researchers ran more autopsies and found no BMAA in the control brains, but BMAA detected in all the Canadian Alzheimer's victims tested.

Canadians don't eat fruit bats. What was going on? Well, the neurotoxin isn't made by the bat, it's made by the trees, although Canadians don't eat cycad trees either. It turns out that cycad trees don't make the neurotoxin either; it's actually a blue-green algae that grows in the roots of the cycad trees which makes the BMAA that gets in the seeds, which gets in the bats, that finally gets into the people. And it's not just this specific type of blue-green algae, but nearly all types of blue-green algae found all over the world produce BMAA. Up until only about a decade ago we thought this neurotoxin was confined to this one weird tropical tree, but now we know the neurotoxin is created by algae throughout the world; from Europe to the U.S., Australia, the Middle East, and elsewhere.

If these neurotoxin-producing blue-green algae are ubiquitous throughout the world, maybe BMAA is a cause of progressive neurodegenerative diseases including ALS worldwide. Researchers in Miami put it to the test and found BMAA in the brains of Floridians who died from sporadic Alzheimer's disease and ALS, but not in the brains of those that died of a different neurodegenerative disease called Huntington's, which we know is caused by a genetic mutation, not some neurotoxin. They found significant levels of BMAA in 49 out of 50 samples from 12 Alzheimer's patients and 13 ALS patients. The results (shown in the my video ALS: Fishing for Answers) for American Alzheimer's and ALS patients from the Atlantic southeast and from Canadian Alzheimer's patients from the Pacific Northwest suggested that exposure to BMAA was widespread. The same thing was then found in the brains of those dying from Parkinson's disease. You can apparently even pick up more BMAA in the hair of live ALS patients compared to controls.

So is BMAA present in Florida seafood? Yes, in freshwater fish and shellfish, like oysters and bass, and out in the ocean as well. Some of the fish, shrimp, and crabs had levels of BMAA comparable to those found in the fruit bats of Guam.

In the U.S., fish may be the fruit bats.

Maybe the ice bucket challenge should be to not serve seafood in them. See my video Diet and Amyotrophic Lateral Sclerosis (ALS) for more.

Diet may also play a role in other neurodegenerative disorders:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: GraphicStock. This image has been modified.

Original Link

Benefits of Nutritional Yeast to Prevent the Common Cold

Benefits of Nutritional Yeast to Prevent the Common Cold.jpeg

Natural immunomodulators that can help regulate our immune system without side-effects have been sought for centuries, and all the while they've been sitting in the produce aisle. Plants produce thousand of active compounds, many of which modulate our immune system, but we can't forget the fungi (see Boosting Immunity While Reducing Inflammation).

Mushrooms have used for centuries as folk remedies, and for good reason. Some have been shown to boost immune function, so much so that a type of fiber found in shiitake mushrooms is approved for use as adjunct chemotherapy, injected intravenously to help treat a variety of cancers by rallying our immune defenses.

More than 6,000 papers have been published on these so-called beta glucans, but almost all of the data about preventing infections had come from petri dish or lab animal studies, until a few years ago when a series of experiments on athletes showed beneficial effects in marathon runners (see Preserving Immune Function in Athletes With Nutritional Yeast). What about the rest of us? We didn't know... until now.

As I explore in my video, Nutritional Yeast to Prevent the Common Cold, beta glucan fiber found in baker's, brewer's and nutritional yeast helps to maintain our body's defense against pathogens even in nonathletes, according to a double-blind, randomized, placebo-controlled trial. The recurrence of infections with the common cold was reduced by 25% in those that ate the equivalent of about a spoonful of nutritional yeast a day, and had fewer cold-related sleeping difficulties when they did get sick.

What about half a spoonful a day? Still worked! Subjects experienced a big drop in common cold incidence and a reduction in symptoms as well. Why is this? This study found that not only were upper respiratory infection symptoms diminished, but that mood states appeared to improve, for example a significant boost in feelings of "vigor." So the researchers suggest that maybe the yeast fiber is able to counteract the negative effects of stress on the immune system.

In terms of side-effects, two folks reported stomachaches, but they were both in the placebo group.

Unlike antibiotics and antivirals, which are designed to kill the pathogen directly, these yeast compounds instead appear to work by stimulating our immune defenses, and as such don't share the same antibiotic side effects. They stimulate our immune defenses presumably because our body recognizes them as foreign. But if it's treated like an invader, might it trigger an inflammatory response? Turns out these fiber compounds may actually have an anti-inflammatory effect, suggesting nutritional yeast may offer the best of both worlds, boosting the infection fighting side of the immune system while suppressing inflammatory components.

Yeast is high in purines, so those with gout, uric acid kidney stones, and new organ transplant recipients may want to keep their intake to less than a teaspoon a day. But is there any downside for everyone else? In California some packages of nutritional yeast are slapped with prop 65 warning stickers, suggesting there's something in it exceeding cancer or birth defect safety limits. I called around to the companies and it turns out the problem is lead. California state law says a product cannot contain more than half of a microgram of lead per daily serving, so I contacted the six brands I knew about and asked them how much lead was in their products.

KAL originally said "<5 ppm," but when we called back they said "<3 ppm." Even if it's 3, that translates into less than 45 micrograms per serving, nearly a 100 times more than the California limit. But perhaps that's better than Bob's Red Mill or Frontier Coop, who evidently don't test at all. But at least they got back to me. Redstar brand failed to respond to multiple attempts to contact them. Now Foods said they test for lead and claim that at least their recent batches meet the less than a half a microgram California standard. Unfortunately, despite repeated requests they would not provide me with documentation to substantiate their numbers. My favorite response was from Bragg's who sent me the analysis certificate from the lab showing less than 0.01 ppm, which means at most less than half the California standard, which I believe is the most stringent in the world. To put the numbers in context, in determining how much lead manufacturers can put into candy likely to be frequently consumed by small children, the Food and Drug Administration would allow about 2 micrograms a day in the form of lollipops, but as far as I'm concerned the less lead the better.

I was so frustrated by the lack of transparency I decided to test them for lead myself. NutritionFacts.org hired an independent lab to conduct our own tests for lead and shipped out 8 samples of nutritional yeast in their original package. The lab used standard practices for lead testing known as Official Methods of Analysis set by AOAC International. Lab technicians determined the lead values based on California Prop 65 standards. Here are the results from the brands we tested:

Bob's Red Mill - Test report shows no detectable lead (<0.01 ppm).

Bragg - Test report shows no detectable lead (< 0.01 ppm).

Dr. Fuhrman - Test report shows no detectable lead (< 0.01 ppm).

Frontier Coop - Test report shows lead levels at 0.021 ppm. It would take six tablespoons a day (based on the manufacture's listed density) to exceed the California Office of Environmental Health Hazard Assessment Maximum Allowable Dose Level (MADL) for chemicals causing reproductive toxicity.*

KAL - Test report shows lead levels at 0.011 ppm. It would take seven tablespoons a day to exceed the MADL.*

NOW Foods - Test report shows no detectable lead (< 0.01 ppm).

Red Star - Test report shows no detectable lead (< 0.01 ppm).

Whole Foods - Test report shows lead levels at 0.012 ppm. It would take six tablespoons a day to exceed the MADL.*

So what do all those numbers mean? None of the brands tested exceeded California prop 65 standards. No matter what brand, consuming a typical serving (2 tablespoons) per day is still well within safe limits.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

* The Maximum Allowable Dose Level for lead as a developmental toxin is 0.5 micrograms a day. How are MADL's calculated? Basically scientists figure out what the "no observable effect level" is, the level at which no birth defects or reproductive toxicity can be found, and then introduce a 1000-fold safety buffer. So for example, let's say there's some chemical that causes birth defects if expectant moms are exposed to two drops of the chemical a day, but there's no evidence that one drop a day is harmful. Do they set the Maximum Allowable Dose Level at one drop? No, they set it at 1/1000th of a drop to account for scientific uncertainty and to err on the side of caution. So by saying six tablespoons a day of nutritional yeast may exceed the MADL is in effect saying that the level of lead found in 6,000 tablespoons of nutritional yeast may cause birth defects. Like mercury, though, as far as I'm concerned the less lead exposure the better. I hope this will inspire companies to do further testing to see if the levels we found were just flukes.

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Sweet Beet Salad

This beet salad is very easy to make and full of flavor. It calls for only six ingredients and is really pretty, perfect for a special occasion or just when you want a break from the standard green salad. Enjoy! Print Sweet Beet Salad Prep time:  10 mins Cook time:  15 mins Total time:  25...

Read More »

The post Sweet Beet Salad appeared first on Straight Up Food.

Original Link

Benefits of Oatmeal for Fatty Liver Disease

Benefits of Oatmeal for Fatty Liver Disease.jpeg

If oatmeal is so powerful that it can clear up some of the ravages of chemotherapy just applied to the skin (see my video Oatmeal Lotion for Chemotherapy-Induced Rash), what might it do if we actually ate it? Oats are reported to possess varied drug-like activities like lowering blood cholesterol and blood sugar, boosting our immune system, anticancer, antioxidant, and anti-atherosclerosis activites, in addition to being a topical anti-inflammatory, and reprtedly may also be useful in controlling childhood asthma and body weight.

Whole-grain intake in general is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain, as shown in my video Can Oatmeal Help Fatty Liver Disease?. All of the cohort studies on type 2 diabetes and heart disease show whole grain intake is associated with lower risk.

Researchers have observed the same for obesity--consistently less weight gain for those who consumed a few servings of whole grains every day. All the forward-looking population studies demonstrate that a higher intake of whole grains is associated with lower body mass index and body weight gain. However, these results do not clarify whether whole grain consumption is simply a marker of a healthier lifestyle or a factor favoring lower body weight.

For example, high whole grain consumers--those who eat whole wheat, brown rice, and oatmeal for breakfast--tend to be more physically active, smoke less, and consume more fruit, vegetables, and dietary fiber than those that instead reach for fruit loops. Statistically, one can control these factors, effectively comparing nonsmokers to nonsmokers with similar exercise and diet as most of the studies did, and they still found whole grains to be protective via a variety of mechanisms.

For example, in terms of helping with weight control, the soluble fiber of oatmeal forms a gel in the stomach, delaying stomach emptying, making one feel full for a longer period. It seems plausible that whole grain intake does indeed offer direct benefits, but only results of randomized controlled intervention studies can provide direct evidence of cause and effect. In other words, the evidence is clear that oatmeal consumers have lower rates of disease, but that's not the same as proving that if we start eating more oatmeal, our risk will drop. To know that, we need an interventional trial, ideally a blinded study where you give half the people oatmeal, and the other half fake placebo oatmeal that looks and tastes like oatmeal, to see if it actually works. And that's what we finally got--a double-blinded randomized trial of overweight and obese men and women. Almost 90% of the real oatmeal-treated subjects had reduced body weight, compared to no weight loss in the control group. They saw a slimmer waist on average, a 20 point drop in cholesterol, and an improvement in liver function.

Nonalcoholic fatty liver disease, meaning a fatty liver caused by excess food rather than excess drink, is now the most common cause of liver disease in the United States, and can lead in rare cases to cirrhosis of the liver, cancer of the liver, and death. Theoretically, whole grains could help prevent and treat fatty liver disease, but this is the first time it had been put to the test. A follow-up study in 2014 confirmed these findings of a protective role of whole grains, but refined grains was associated with increased risk. So one would not expect to get such wonderful results from wonder bread.

How can you make your oatmeal even healthier? See Antioxidants in a Pinch.

Whole Grains May Work As Well As Drugs for hypertension, but refined grain intake may linked with high blood pressure and diseases like diabetes. But If White Rice is Linked to Diabetes, What About China?.

More on keeping the liver healthy in videos like:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Telomeres, the Key to Longevity, Show Food May Be the Best Anti-aging Treatment

The global anti-aging market will be worth nearly $200 billion in 2019. New beauty technologies make anti-aging products big business. But what about the possibility of anti-aging treatments for the health of our body, and not just the surface of... Read more

Original Link

Most Doctors Want You to Get Healthier, and are not in Bed with Big Pharma

Once my patients learn about the huge role diet has on their health, they often express anger that their previous physicians did not educate them about this and instead just doled out pills and procedures. Many patients are frustrated by... Read more

Original Link

Does Oatmeal Lotion Work?

Does Oatmeal Lotion Work?.jpeg

A review in the Journal of Drugs in Dermatology notes oatmeal has been used for centuries as a topical soothing agent on the skin to relieve itch and irritation in dermatology. Of course, that was coming from Johnson & Johnson, which sells a brand of oatmeal lotion. But if it helps with dry skin or a bug bite, I can imagine it having some soothing quality. One study out of Georgetown University, though, shocked me.

There's a class of chemo drugs, like Cetuximab, that can cause an awful rash. Various treatments have been tried and failed. There was no clear preventive or curative treatment for this eruption, until this remarkable study, which you can see in my Oatmeal Lotion for Chemotherapy-Induced Rash video.

The researchers had heard about a study where human skin fragments from plastic surgery were subjected to an inflammatory chemical, and adding an oatmeal extract appeared to help. Of the ten patients with chemo rashes who the researchers were able to get to try some oatmeal lotion, six had a complete response, and four a partial response, giving an overall oatmeal response rate of 100%.

Doctors wrote in from around the world. Significant improvement in all patients seemed too good to be true, but out of desperation they tried it and got the same astonishing results. Oatmeal--a simple topical agent producing such spectacular benefit where more complex therapies have failed. In an age when ever more expensive treatments are consistently being championed, it would be a great pity if this inexpensive, natural approach to relieving distressing symptoms were to be overlooked.

Ironically, two of the cancer cell lines found resistant in vitro to this type of chemotherapy were found to be sensitive to avenanthramides, which are unique phytonutrients found in oats, suggesting that people should be applying oatmeal to their insides as well.

Normally I wouldn't make a whole video for such a rare use, but I was so impressed with the results I figured that even if I could help one person in this situation it would be worth it. Reminds me of my videos Treating Gorlin Syndrome With Green Tea and Topical Application of Turmeric Curcumin for Cancer.

If oatmeal is so powerful that it can clear up some of the ravages of chemotherapy just applied to the skin, what might it do if we actually ate it? That's the subject of my video Can Oatmeal Help Fatty Liver Disease?.

Cetuximab is often given for metastatic colorectal cancer. Better to try to prevent the disease in the first place:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

Why Is Milk Consumption Associated with More Bone Fractures?

Why Is Milk Consumption Associated with More Bone Fractures?.jpg

Milk is touted to build strong bones, but a compilation of all the best studies found no association between milk consumption and hip fracture risk, so drinking milk as an adult might not help bones, but what about in adolescence? Harvard researchers decided to put it to the test.

Studies have shown that greater milk consumption during childhood and adolescence contributes to peak bone mass, and is therefore expected to help avoid osteoporosis and bone fractures in later life. But that's not what researchers have found (as you can see in my video Is Milk Good for Our Bones?). Milk consumption during teenage years was not associated with a lower risk of hip fracture, and if anything, milk consumption was associated with a borderline increase in fracture risk in men.

It appears that the extra boost in total body bone mineral density from getting extra calcium is lost within a few years; even if you keep the calcium supplementation up. This suggests a partial explanation for the long-standing enigma that hip fracture rates are highest in populations with the greatest milk consumption. This may be an explanation for why they're not lower, but why would they be higher?

This enigma irked a Swedish research team, puzzled because studies again and again had shown a tendency of a higher risk of fracture with a higher intake of milk. Well, there is a rare birth defect called galactosemia, where babies are born without the enzymes needed to detoxify the galactose found in milk, so they end up with elevated levels of galactose in their blood, which can causes bone loss even as kids. So maybe, the Swedish researchers figured, even in normal people that can detoxify the stuff, it might not be good for the bones to be drinking it every day.

And galactose doesn't just hurt the bones. Galactose is what scientists use to cause premature aging in lab animals--it can shorten their lifespan, cause oxidative stress, inflammation, and brain degeneration--just with the equivalent of like one to two glasses of milk's worth of galactose a day. We're not rats, though. But given the high amount of galactose in milk, recommendations to increase milk intake for prevention of fractures could be a conceivable contradiction. So, the researchers decided to put it to the test, looking at milk intake and mortality as well as fracture risk to test their theory.

A hundred thousand men and women were followed for up to 20 years. Researchers found that milk-drinking women had higher rates of death, more heart disease, and significantly more cancer for each glass of milk. Three glasses a day was associated with nearly twice the risk of premature death, and they had significantly more bone and hip fractures. More milk, more fractures.

Men in a separate study also had a higher rate of death with higher milk consumption, but at least they didn't have higher fracture rates. So, the researchers found a dose dependent higher rate of both mortality and fracture in women, and a higher rate of mortality in men with milk intake, but the opposite for other dairy products like soured milk and yogurt, which would go along with the galactose theory, since bacteria can ferment away some of the lactose. To prove it though, we need a randomized controlled trial to examine the effect of milk intake on mortality and fractures. As the accompanying editorial pointed out, we better find this out soon since milk consumption is on the rise around the world.

What can we do for our bones, then? Weight-bearing exercise such as jumping, weight-lifting, and walking with a weighted vest or backpack may help, along with getting enough calcium (Alkaline Diets, Animal Protein, & Calcium Loss) and vitamin D (Resolving the Vitamin D-Bate). Eating beans (Phytates for the Prevention of Osteoporosis) and avoiding phosphate additives (Phosphate Additives in Meat Purge and Cola) may also help.

Maybe the galactose angle can help explain the findings on prostate cancer (Prostate Cancer and Organic Milk vs. Almond Milk) and Parkinson's disease (Preventing Parkinson's Disease With Diet).

Galactose is a milk sugar. There's also concern about milk proteins (see my casomorphin series) and fats (The Saturated Fat Studies: Buttering Up the Public and Trans Fat in Meat and Dairy) as well as the hormones (Dairy Estrogen and Male Fertility, Estrogen in Meat, Dairy, and Eggs and Why Do Vegan Women Have 5x Fewer Twins?).

Milk might also play a role in diabetes (Does Casein in Milk Trigger Type 1 Diabetes, Does Bovine Insulin in Milk Trigger Type 1 Diabetes?) and breast cancer (Is Bovine Leukemia in Milk Infectious?, The Role of Bovine Leukemia Virus in Breast Cancer, and Industry Response to Bovine Leukemia Virus in Breast Cancer).

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link