Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

Best Foods for Acid Reflux

Best Foods for Acid Reflux.jpeg

Gastroesophageal reflux disease (GERD) is one of the most common disorders of the digestive tract. The two most typical symptoms are heartburn and regurgitation of stomach contents into the back of the throat, but GERD is not just burning pain and a sour taste in your mouth. It causes millions of doctor visits and hospitalizations every year in the United States. The most feared complication is cancer.

You start out with a normal esophagus. If the acid keeps creeping up, your esophagus can get inflamed and result in esophagitis. Esophagitis can transform into Barrett's esophagus, a precancerous condition which can then turn into adenocarcinoma (a type of cancer). To prevent all that, we need to prevent the acid reflux in the first place.

In the last three decades, the incidence of this cancer in the US has increased six-fold, an increase greater than that of melanoma, breast, or prostate cancer. This is because acid reflux is on the rise. In the United States, we're up to about 1 in 4 people suffering at least weekly heartburn and/or acid regurgitation, compared to around 5% in Asia. This suggests that dietary factors may play a role.

In general, high fat intake is associated with increased risk, whereas high fiber foods appear to be protective. The reason fat intake may be associated with GERD symptoms and erosive esophagitis is because when we eat fatty foods, the sphincter at the top of the stomach that's supposed to keep the food down becomes relaxed, so more acid can creep up into the esophagus. In my video Diet & GERD Acid Reflux Heartburn, you can see a study in which researchers fed volunteers a high-fat meal--a McDonald's sausage and egg McMuffin--compared to a low-fat meal (McDonald's hot cakes), and there was significantly more acid squirted up in the esophagus after the high-fat meal.

In terms of later stages of disease progression, over the last twenty years 45 studies have been published in the association between diet and Barrett's esophagus and esophageal cancer. In general, they found that meat and high-fat meals appeared to increase cancer risk. Different meats were associated with cancers in different locations, thoughj. Red meat was more associated with cancer in the esophagus, whereas poultry was more associated with cancer at the top of the stomach. Plant-based sources of protein, such as beans and nuts, were associated with a significantly decreased risk of cancer.

Those eating the most antioxidant-rich foods have half the odds of esophageal cancer, while there is practically no reduction in risk among those who used antioxidant vitamin supplements, such as vitamin C or E pills. The most protective produce may be red-orange vegetables, dark green leafies, berries, apples, and citrus. The benefit may come from more than just eating plants. Eating healthy foods crowds out less healthy foods, so it may be a combination of both.

Based on a study of 3,000 people, the consumption of non-vegetarian foods (including eggs) was an independent predictor of GERD. Egg yolks cause an increase in the hormone cholecystokinin, which may overly relax the sphincter that separates the esophagus from the stomach. The same hormone is increased by meat, which may help explain why plant-based diets appear to be a protective factor for reflux esophagitis.

Researchers found that those eating meat had twice the odds of reflux-induced esophageal inflammation. Therefore, plant-based diets may offer protection, though it's uncertain whether it's attributable to the absence of meat in the diet or the increased consumption of healthy foods. Those eating vegetarian consume greater amounts of fruits and vegetables containing innumerable phytochemicals, dietary fiber, and antioxidants. They also restrict their consumption of animal sources of food, which tend to be fattier and can thus relax that sphincter and aggravate reflux.

GERD is common; its burdens are enormous. It relapses frequently and can cause bleeding, strictures, and a deadly cancer. The mainstay of treatment is proton pump inhibitor drugs, which rake in billions of dollars. We spend four billion dollars on Nexium alone, three billion on Prevacid, two billion on Protonix, one billion on Aciphex. These drugs can cause nutrient deficiencies and increase the risk for pneumonia, food poisoning, and bone fractures. Thus, it is important to find correctable risk factors and correct them. Known correctable risk factors have been things like obesity, smoking and alcohol consumption. Until recently, though, there hadn't been studies on specifically what to eat and what to avoid, but now we have other correctable factors to help prevent this disease.

For more on GERD, see: Diet & Hiatal Hernia, Coffee & Mortality, and Club Soda for Stomach Pain & Constipation.

I also have a video about esophageal cancer, detailing the extraordinary reversal of the kinds of precancerous changes that lead to the devastating condition--with nothing but strawberries: Strawberries versus Esophageal Cancer.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: PDPics / Pixabay. Image has been modified.

Original Link

The Best Diet to Prevent Kidney Stones

The Best Diet to Prevent Kidney Stones.jpeg

In my video How to Prevent Kidney Stones With Diet you can see what the jagged surface of a kidney stone looks like under a microscope. Imagine one of those scraping down your urinary canal! Kidney stones affect approximately 1 in 11 people in the United States. Twenty years ago it was only 1 in 20, representing a dramatic increase in the prevalence of the disease that started rising after World War II. Our first clue as to why was a study published in the 70's, which found a striking relationship between stone incidence and the consumption of animal protein. This was a population study, though, so it couldn't prove cause and effect.

That study inspired researchers in Britain to do an interventional study, adding animal protein to subjects' diets, such as an extra can of tuna fish a day, and measuring stone-forming risk factors in their urine. Participants' overall probability of forming stones increased 250% during those days they were eating that extra fish. And the so-called "high animal protein diet" was just enough to bring intake up to that of the average American. So Americans' intake of meat appears to markedly increase the risk of kidney stones.

What about consuming no meat at all? By the late 70's we knew that the only dietary factor consistently associated with kidney stones was animal protein. The higher the intake of animal protein, the more likely the individual was to not only get their first kidney stone, but to then suffer from subsequent multiple stones. This effect was not found for high protein intake in general, but specifically high animal protein intake. Conversely, a diet low in animal protein may dramatically reduce the overall probability of forming stones. This may explain the apparently low incidence of stones in vegetarian societies, so researchers advocated "a more vegetarian form of diet" as a means of reducing the risk.

It wasn't until 2014 that vegetarian kidney stone risk was studied in detail, though. Using hospital admissions data, researchers found that vegetarians were indeed at a lower risk of being hospitalized for kidney stones. It's not all or nothing, though. Among meat-eaters, increasing meat intake is associated with a higher risk of developing kidney stones, whereas a high intake of fresh fruit, fiber, and magnesium may reduce the risk.

Which animal protein is the worst? People who form kidney stones are commonly advised to restrict the intake of red meat to decrease stone risk, but what about chicken and fish? Despite compelling evidence that excessive animal protein consumption enhances the risk of stone formation, the effect of different sources of animal protein had not been explored until another study in 2014. Researchers compared the effects of salmon and cod, chicken breast meat, and burger and steak. In terms of uric acid production, they found that gram for gram fish may actually be worse. However, the overall effects were complex. Basically, stone formers should be counseled to limit the intake of all animal proteins, and not by just a little bit. Only those who markedly decrease their animal protein intake may expect to benefit.

Making our urine more alkaline can also help prevent the formation of kidney stones (and even dissolve and cure uric acid stones). How can you tell the pH of your urine? See my video Testing Your Diet with Pee & Purple Cabbage.

For more on kidney stones, see How to Treat Kidney Stones with Diet and Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?. And check out my overview of kidney health in How Not to Die from Kidney Disease.

Uric acid can also crystallize in our joints, but the good news is that there are natural treatments. See Gout Treatment with a Cherry on Top and Treating Gout with Cherry Juice.

Kidney stones are just one more reason that Plant Protein is Preferable.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

The Best Diet to Prevent Kidney Stones

The Best Diet to Prevent Kidney Stones.jpeg

In my video How to Prevent Kidney Stones With Diet you can see what the jagged surface of a kidney stone looks like under a microscope. Imagine one of those scraping down your urinary canal! Kidney stones affect approximately 1 in 11 people in the United States. Twenty years ago it was only 1 in 20, representing a dramatic increase in the prevalence of the disease that started rising after World War II. Our first clue as to why was a study published in the 70's, which found a striking relationship between stone incidence and the consumption of animal protein. This was a population study, though, so it couldn't prove cause and effect.

That study inspired researchers in Britain to do an interventional study, adding animal protein to subjects' diets, such as an extra can of tuna fish a day, and measuring stone-forming risk factors in their urine. Participants' overall probability of forming stones increased 250% during those days they were eating that extra fish. And the so-called "high animal protein diet" was just enough to bring intake up to that of the average American. So Americans' intake of meat appears to markedly increase the risk of kidney stones.

What about consuming no meat at all? By the late 70's we knew that the only dietary factor consistently associated with kidney stones was animal protein. The higher the intake of animal protein, the more likely the individual was to not only get their first kidney stone, but to then suffer from subsequent multiple stones. This effect was not found for high protein intake in general, but specifically high animal protein intake. Conversely, a diet low in animal protein may dramatically reduce the overall probability of forming stones. This may explain the apparently low incidence of stones in vegetarian societies, so researchers advocated "a more vegetarian form of diet" as a means of reducing the risk.

It wasn't until 2014 that vegetarian kidney stone risk was studied in detail, though. Using hospital admissions data, researchers found that vegetarians were indeed at a lower risk of being hospitalized for kidney stones. It's not all or nothing, though. Among meat-eaters, increasing meat intake is associated with a higher risk of developing kidney stones, whereas a high intake of fresh fruit, fiber, and magnesium may reduce the risk.

Which animal protein is the worst? People who form kidney stones are commonly advised to restrict the intake of red meat to decrease stone risk, but what about chicken and fish? Despite compelling evidence that excessive animal protein consumption enhances the risk of stone formation, the effect of different sources of animal protein had not been explored until another study in 2014. Researchers compared the effects of salmon and cod, chicken breast meat, and burger and steak. In terms of uric acid production, they found that gram for gram fish may actually be worse. However, the overall effects were complex. Basically, stone formers should be counseled to limit the intake of all animal proteins, and not by just a little bit. Only those who markedly decrease their animal protein intake may expect to benefit.

Making our urine more alkaline can also help prevent the formation of kidney stones (and even dissolve and cure uric acid stones). How can you tell the pH of your urine? See my video Testing Your Diet with Pee & Purple Cabbage.

For more on kidney stones, see How to Treat Kidney Stones with Diet and Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?. And check out my overview of kidney health in How Not to Die from Kidney Disease.

Uric acid can also crystallize in our joints, but the good news is that there are natural treatments. See Gout Treatment with a Cherry on Top and Treating Gout with Cherry Juice.

Kidney stones are just one more reason that Plant Protein is Preferable.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Animal Protein Does in Your Colon

What Animal Protein Does in Your Colon.jpeg

There's a take-off of the industry slogan, "Beef: It's What's For Dinner" - "Beef: It's What's Rotting in Your Colon." I saw this on a shirt once with some friends and I was such the party pooper--no pun intended--explaining to everyone that meat is fully digested in the small intestine, and never makes it down into the colon. It's no fun hanging out with biology geeks.

But I was wrong!

It's been estimated that with a typical Western diet, up to 12 grams of protein can escape digestion, and when it reaches the colon, it can be turned into toxic substances like ammonia. This degradation of undigested protein in the colon is called putrefaction, so a little meat can actually end up putrefying in our colon. The problem is that some of the by-products of this putrefaction process can be toxic.

It's generally accepted that carbohydrate fermentation--the fiber and resistant starches that reach our colon--results in beneficial effects because of the generation of short-chain fatty acids like butyrate, whereas protein fermentation is considered detrimental. Protein fermentation mainly occurs in the lower end of colon and results in the production of potentially toxic metabolites. That may be why colorectal cancer and ulcerative colitis tends to happen lower down--because that's where the protein is putrefying.

Probably the simplest strategy to reduce the potential harm of protein fermentation is to reduce dietary protein intake. But the accumulation of these toxic byproducts of protein metabolism may be attenuated by the fermentation of undigested plant matter. In my video, Bowel Wars: Hydrogen Sulfide vs. Butyrate, you can see a study out of Australia showed that if you give people foods containing resistant starch you can block the accumulation of potentially harmful byproducts of protein metabolism. Resistant starch is resistant to small intestine digestion and so it makes it down to our colon where it can feed our good bacteria. Resistant starch is found in cooked beans, split peas, chickpeas, lentils, raw oatmeal, and cooled cooked pasta (like macaroni salad). Apparently, the more starch that ends up in the colon, the less ammonia that is produced.

Of course, there's protein in plants too. The difference is that animal proteins tend to have more sulfur-containing amino acids like methionine, which can be turned into hydrogen sulfide in our colon. Hydrogen sulfide is the rotten egg gas that may play a role in the development of the inflammatory bowel disease, ulcerative colitis (see Preventing Ulcerative Colitis with Diet).

The toxic effects of hydrogen sulfide appear to be a result of blocking the ability of the cells lining our colon from utilizing butyrate, which is what our good bacteria make from the fiber and resistant starch we eat. It's like this constant battle in our colon between the bad metabolites of protein, hydrogen sulfide, and the good metabolites of carbohydrates, butyrate. Using human colon samples, researchers were able to show that the adverse effects of sulfide could be reversed by butyrate. So we can either cut down on meat, eat more plants, or both.

There are two ways hydrogen sulfide can be produced, though. It's mainly present in our large intestine as a result of the breakdown of sulfur-containing proteins, but the rotten egg gas can also be generated from inorganic sulfur preservatives like sulfites and sulfur dioxide.

Sulfur dioxide is used as a preservative in dried fruit, and sulfites are added to wines. We can avoid sulfur additives by reading labels or by just choosing organic, since they're forbidden from organic fruits and beverages by law.

More than 35 years ago, studies started implicating sulfur dioxide preservatives in the exacerbation of asthma. This so-called "sulfite-sensitivity" seems to affect only about 1 in 2,000 people, so I recommended those with asthma avoid it, but otherwise I considered the preservative harmless. I am now not so sure, and advise people to avoid it when possible.

Cabbage family vegetables naturally have some sulfur compounds, but thankfully, after following more than a hundred thousand women for over 25 years, researchers concluded cruciferous vegetables were not associated with elevated colitis risk.

Because of animal protein and processed food intake, the standard American diet may contain five or six times more sulfur than a diet centered around unprocessed plant foods. This may help explain the rarity of inflammatory bowel disease among those eating traditional whole food, plant-based diets.

How could companies just add things like sulfur dioxide to foods without adequate safety testing? See Who Determines if Food Additives are Safe? For other additives that may be a problem, see Titanium Dioxide & Inflammatory Bowel Disease and Is Carrageenan Safe?

More on this epic fermentation battle in our gut in Stool pH and Colon Cancer.

Does the sulfur-containing amino acid methionine sound familiar? You may remember it from such hits as Starving Cancer with Methionine Restriction and Methionine Restriction as a Life Extension Strategy.

These short-chain fatty acids released by our good bacteria when we eat fiber and resistant starches are what may be behind the second meal effect: Beans and the Second Meal Effect.

I mentioned ulcerative colitis. What about the other inflammatory bowel disease Crohn's? See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Animal Protein Does in Your Colon

What Animal Protein Does in Your Colon.jpeg

There's a take-off of the industry slogan, "Beef: It's What's For Dinner" - "Beef: It's What's Rotting in Your Colon." I saw this on a shirt once with some friends and I was such the party pooper--no pun intended--explaining to everyone that meat is fully digested in the small intestine, and never makes it down into the colon. It's no fun hanging out with biology geeks.

But I was wrong!

It's been estimated that with a typical Western diet, up to 12 grams of protein can escape digestion, and when it reaches the colon, it can be turned into toxic substances like ammonia. This degradation of undigested protein in the colon is called putrefaction, so a little meat can actually end up putrefying in our colon. The problem is that some of the by-products of this putrefaction process can be toxic.

It's generally accepted that carbohydrate fermentation--the fiber and resistant starches that reach our colon--results in beneficial effects because of the generation of short-chain fatty acids like butyrate, whereas protein fermentation is considered detrimental. Protein fermentation mainly occurs in the lower end of colon and results in the production of potentially toxic metabolites. That may be why colorectal cancer and ulcerative colitis tends to happen lower down--because that's where the protein is putrefying.

Probably the simplest strategy to reduce the potential harm of protein fermentation is to reduce dietary protein intake. But the accumulation of these toxic byproducts of protein metabolism may be attenuated by the fermentation of undigested plant matter. In my video, Bowel Wars: Hydrogen Sulfide vs. Butyrate, you can see a study out of Australia showed that if you give people foods containing resistant starch you can block the accumulation of potentially harmful byproducts of protein metabolism. Resistant starch is resistant to small intestine digestion and so it makes it down to our colon where it can feed our good bacteria. Resistant starch is found in cooked beans, split peas, chickpeas, lentils, raw oatmeal, and cooled cooked pasta (like macaroni salad). Apparently, the more starch that ends up in the colon, the less ammonia that is produced.

Of course, there's protein in plants too. The difference is that animal proteins tend to have more sulfur-containing amino acids like methionine, which can be turned into hydrogen sulfide in our colon. Hydrogen sulfide is the rotten egg gas that may play a role in the development of the inflammatory bowel disease, ulcerative colitis (see Preventing Ulcerative Colitis with Diet).

The toxic effects of hydrogen sulfide appear to be a result of blocking the ability of the cells lining our colon from utilizing butyrate, which is what our good bacteria make from the fiber and resistant starch we eat. It's like this constant battle in our colon between the bad metabolites of protein, hydrogen sulfide, and the good metabolites of carbohydrates, butyrate. Using human colon samples, researchers were able to show that the adverse effects of sulfide could be reversed by butyrate. So we can either cut down on meat, eat more plants, or both.

There are two ways hydrogen sulfide can be produced, though. It's mainly present in our large intestine as a result of the breakdown of sulfur-containing proteins, but the rotten egg gas can also be generated from inorganic sulfur preservatives like sulfites and sulfur dioxide.

Sulfur dioxide is used as a preservative in dried fruit, and sulfites are added to wines. We can avoid sulfur additives by reading labels or by just choosing organic, since they're forbidden from organic fruits and beverages by law.

More than 35 years ago, studies started implicating sulfur dioxide preservatives in the exacerbation of asthma. This so-called "sulfite-sensitivity" seems to affect only about 1 in 2,000 people, so I recommended those with asthma avoid it, but otherwise I considered the preservative harmless. I am now not so sure, and advise people to avoid it when possible.

Cabbage family vegetables naturally have some sulfur compounds, but thankfully, after following more than a hundred thousand women for over 25 years, researchers concluded cruciferous vegetables were not associated with elevated colitis risk.

Because of animal protein and processed food intake, the standard American diet may contain five or six times more sulfur than a diet centered around unprocessed plant foods. This may help explain the rarity of inflammatory bowel disease among those eating traditional whole food, plant-based diets.

How could companies just add things like sulfur dioxide to foods without adequate safety testing? See Who Determines if Food Additives are Safe? For other additives that may be a problem, see Titanium Dioxide & Inflammatory Bowel Disease and Is Carrageenan Safe?

More on this epic fermentation battle in our gut in Stool pH and Colon Cancer.

Does the sulfur-containing amino acid methionine sound familiar? You may remember it from such hits as Starving Cancer with Methionine Restriction and Methionine Restriction as a Life Extension Strategy.

These short-chain fatty acids released by our good bacteria when we eat fiber and resistant starches are what may be behind the second meal effect: Beans and the Second Meal Effect.

I mentioned ulcerative colitis. What about the other inflammatory bowel disease Crohn's? See Preventing Crohn's Disease With Diet and Dietary Treatment of Crohn's Disease.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

White Meat May Be as Cholesterol-Raising as Red

White Meat May Be as Cholesterol-Raising as Red.jpeg

In light of recommendations for heart healthy eating from national professional organizations encouraging Americans to limit their intake of meat, the beef industry commissioned and co-wrote a review of randomized controlled trials comparing the effects of beef versus chicken and fish on cholesterol levels published over the last 60 years. They found that the impact of beef consumption on the cholesterol profile of humans is similar to that of fish and/or poultry--meaning that switching from red meat to white meat likely wouldn't make any difference. And that's really no surprise, given how fat we've genetically manipulated chickens to be these days, up to ten times more fat than they had a century ago (see Does Eating Obesity Cause Obesity?).

There are a number of cuts of beef that have less cholesterol-raising saturated fat than chicken (see BOLD Indeed: Beef Lowers Cholesterol?), so it's not so surprising that white meat was found to be no better than red, but the beef industry researchers conclusion was that "therefore you can eat beef as part of a balanced diet to manage your cholesterol."

Think of the Coke versus Pepsi analogy. Coke has less sugar than Pepsi: 15 spoonfuls of sugar per bottle instead of 16. If studies on blood sugar found no difference between drinking Coke versus Pepsi, you wouldn't conclude that "Pepsi may be considered when recommending diets for the management of blood sugars," you'd say they're both equally as bad so we should ideally consume neither.

That's a standard drug industry trick. You don't compare your fancy new drug to the best out there, but to some miserable drug to make yours look better. Note they didn't compare beef to plant proteins, like in this study published in the American Journal of Clinical Nutrition. As I started reading it, though, I was surprised that they found no benefit of switching to a plant protein diet either. What were they eating? You can see the comparison in Switching from Beef to Chicken & Fish May Not Lower Cholesterol.

For breakfast, the plant group got a kidney bean and tomato casserole and a salad, instead of a burger. And for dinner, instead of another burger, the plant protein group just got some boring vegetables. So why was the cholesterol of the plant group as bad as the animal group? They had the plant protein group eating three tablespoons of beef tallow every day--three tablespoons of straight beef fat!

This was part of a series of studies that tried to figure out what was so cholesterol-raising about meat--was it the animal protein or was it the animal fat? So, researchers created fake meat products made to have the same amount of saturated fat and cholesterol by adding extracted animal fats and cholesterol. Who could they get to make such strange concoctions? The Ralston Purina dog food company.

But what's crazy is that even when keeping the saturated animal fat and cholesterol the same (by adding meat fats to the veggie burgers and making the plant group swallow cholesterol pills to equal it out), sometimes they still saw a cholesterol lowering advantage in the plant protein group.

If you switch people from meat to tofu, their cholesterol goes down, but what if you switch them from meat to tofu plus lard? Then their cholesterol may stay the same, though tofu and lard may indeed actually be better than meat, since it may result in less oxidized cholesterol. More on the role of oxidized cholesterol can be found in my videos Does Cholesterol Size Matter? and Arterial Acne.

Just swapping plant protein for animal protein may have advantages, but if you really want to maximize the power of diet to lower cholesterol, you may have to move entirely toward plants. The standard dietary advice to cut down on fatty meat, dairy, and eggs may lower cholesterol 5-10%, but flexitarian or vegetarian diets may drop our levels 10 to 15%, vegan diets 15 to 25%, and healthier vegan diets can cut up to 35%, as seen in this study out of Canada showing a whopping 61 point drop in LDL cholesterol within a matter of weeks.


You thought chicken was a low-fat food? It used to be a century ago, but not anymore. It may even be one of the reasons we're getting fatter as well: Chicken Big: Poultry and Obesity and Infectobesity: Adenovirus 36 and Childhood Obesity.

Isn't protein just protein? How does our body know if it's coming from a plant or an animal? How could it have different effects on cardiovascular risk? See Protein and Heart Disease, another reason why Plant Protein [is] Preferable.

Lowering cholesterol in your blood is as simple as reducing one's intake of three things: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

What about those news stories on the "vindication" of saturated fat? See the sneaky science in The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: CDC/Debora Cartagena via Freestockphotos.biz. This image has been modified.

Original Link

White Meat May Be as Cholesterol-Raising as Red

White Meat May Be as Cholesterol-Raising as Red.jpeg

In light of recommendations for heart healthy eating from national professional organizations encouraging Americans to limit their intake of meat, the beef industry commissioned and co-wrote a review of randomized controlled trials comparing the effects of beef versus chicken and fish on cholesterol levels published over the last 60 years. They found that the impact of beef consumption on the cholesterol profile of humans is similar to that of fish and/or poultry--meaning that switching from red meat to white meat likely wouldn't make any difference. And that's really no surprise, given how fat we've genetically manipulated chickens to be these days, up to ten times more fat than they had a century ago (see Does Eating Obesity Cause Obesity?).

There are a number of cuts of beef that have less cholesterol-raising saturated fat than chicken (see BOLD Indeed: Beef Lowers Cholesterol?), so it's not so surprising that white meat was found to be no better than red, but the beef industry researchers conclusion was that "therefore you can eat beef as part of a balanced diet to manage your cholesterol."

Think of the Coke versus Pepsi analogy. Coke has less sugar than Pepsi: 15 spoonfuls of sugar per bottle instead of 16. If studies on blood sugar found no difference between drinking Coke versus Pepsi, you wouldn't conclude that "Pepsi may be considered when recommending diets for the management of blood sugars," you'd say they're both equally as bad so we should ideally consume neither.

That's a standard drug industry trick. You don't compare your fancy new drug to the best out there, but to some miserable drug to make yours look better. Note they didn't compare beef to plant proteins, like in this study published in the American Journal of Clinical Nutrition. As I started reading it, though, I was surprised that they found no benefit of switching to a plant protein diet either. What were they eating? You can see the comparison in Switching from Beef to Chicken & Fish May Not Lower Cholesterol.

For breakfast, the plant group got a kidney bean and tomato casserole and a salad, instead of a burger. And for dinner, instead of another burger, the plant protein group just got some boring vegetables. So why was the cholesterol of the plant group as bad as the animal group? They had the plant protein group eating three tablespoons of beef tallow every day--three tablespoons of straight beef fat!

This was part of a series of studies that tried to figure out what was so cholesterol-raising about meat--was it the animal protein or was it the animal fat? So, researchers created fake meat products made to have the same amount of saturated fat and cholesterol by adding extracted animal fats and cholesterol. Who could they get to make such strange concoctions? The Ralston Purina dog food company.

But what's crazy is that even when keeping the saturated animal fat and cholesterol the same (by adding meat fats to the veggie burgers and making the plant group swallow cholesterol pills to equal it out), sometimes they still saw a cholesterol lowering advantage in the plant protein group.

If you switch people from meat to tofu, their cholesterol goes down, but what if you switch them from meat to tofu plus lard? Then their cholesterol may stay the same, though tofu and lard may indeed actually be better than meat, since it may result in less oxidized cholesterol. More on the role of oxidized cholesterol can be found in my videos Does Cholesterol Size Matter? and Arterial Acne.

Just swapping plant protein for animal protein may have advantages, but if you really want to maximize the power of diet to lower cholesterol, you may have to move entirely toward plants. The standard dietary advice to cut down on fatty meat, dairy, and eggs may lower cholesterol 5-10%, but flexitarian or vegetarian diets may drop our levels 10 to 15%, vegan diets 15 to 25%, and healthier vegan diets can cut up to 35%, as seen in this study out of Canada showing a whopping 61 point drop in LDL cholesterol within a matter of weeks.


You thought chicken was a low-fat food? It used to be a century ago, but not anymore. It may even be one of the reasons we're getting fatter as well: Chicken Big: Poultry and Obesity and Infectobesity: Adenovirus 36 and Childhood Obesity.

Isn't protein just protein? How does our body know if it's coming from a plant or an animal? How could it have different effects on cardiovascular risk? See Protein and Heart Disease, another reason why Plant Protein [is] Preferable.

Lowering cholesterol in your blood is as simple as reducing one's intake of three things: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

What about those news stories on the "vindication" of saturated fat? See the sneaky science in The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: CDC/Debora Cartagena via Freestockphotos.biz. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link