What Are the Benefits of Organic?

What Are the Benefits of Organic?.jpeg

The medical literature has been historically hostile to organic foods, blaming in part erroneous information supplied by the health food movement for our ignorance of nutrition. But until just a few generations ago, all food was organic. It's kind of ironic that what we now call conventional food really isn't very conventional for our species.

By eating organic we can reduce our exposure to pesticides, but it remains unclear whether such a reduction in exposure is clinically relevant. In my video, Are Organic Foods Safer?, I talked about some of the test tube studies comparing health-related properties of organic versus conventional foods. Organic produce was found to have higher antioxidant and antimutagenic activity combined with better inhibition of cancer cell proliferation, but in terms of studies on actual people rather than petri dishes, there isn't much science either way.

Why can't you just compare the health of those who buy organic to those who don't? Organic consumers do report being significantly healthier than conventional consumers, but they also tend to eat more plant foods in general and less soda and alcohol, processed meat, or milk, and just eat healthier in general. No wonder they feel so much better!

Therefore, there is an urgent need for interventional trials, or studies following cohorts of people eating organic over time like the Million Women Study in the UK, which was the first to examine the association between the consumption of organic food and subsequent risk of cancer. The only significant risk reduction they found, though, was for non-Hodgkin's lymphoma. This is consistent with data showing a higher risk of developing lymphoma in those who have higher levels of pesticides stored in their butt fat, a study undertaken because farmworkers have been found to have higher rates of lymphoma.

Parental farmworker exposure is also associated with a birth defect of the penis called hypospadias, and so researchers decided to see if moms who failed to choose organic were at increased risk. Indeed they found that frequent consumption of conventional high-fat dairy products was associated with about double the odds of the birth defect. This could just be because those that choose organic have other related healthy behaviors, or it could be that high-fat foods like dairy products bioamplify the fat-soluble toxins in our environment.

In my video, Are Organic Foods Healthier?, you can see two other general population pesticide studies that have raised concerns. One study found about a 50 to 70% increase in the odds of ADHD among children with pesticide levels in their urine, and another that found triple the odds of testicular cancer among men with higher levels of organochlorine pesticides in their blood. 90% of such pollutants come from fish, meat, and dairy, which may help explain rising testicular cancer rates in many western countries since World War II.

What about interventional trials? All we have in the medical literature so far are studies showing organically grown food provides health benefits to fruit flies raised on diets of conventional versus organic produce when subjected to a variety of tests designed to assess overall fly health. And what do you know--flies raised on diets made from organically grown produce lived longer. Hmm, insects eating insecticides don't do as well. Not exactly much of a breakthrough!


For how to best get pesticides off of conventional produce, see my video How to Make Your Own Fruit and Vegetable Wash.

Pesticides are one thing, but Are Organic Foods More Nutritious?

Overall, Are the Benefits of Organic Food Underrated or Overrated?

For more on the impact of food contaminants during pregnancy, see:

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

How Exactly Does Type 2 Diabetes Develop?

How Exactly Does Type 2 Diabetes Develop.jpeg

Insulin resistance is the cause of both prediabetes and type 2 diabetes. OkK, so what is the cause of insulin resistance? Insulin resistance is now accepted to be closely associated with the accumulation of fat within our muscle cells. This fat toxicity inside of our muscles is a major factor in the cause of insulin resistance and type 2 diabetes, as it interferes with the action of insulin. I've explored how fat makes our muscles insulin resistant (see What Causes Insulin Resistance?), how that fat can come from the fat we eat or the fat we wear (see The Spillover Effect Links Obesity to Diabetes), and how not all fats are the same (see Lipotoxicity: How Saturated Fat Raises Blood Sugar). It's the type of fat found predominantly in animal fats, relative to plant fats, that appears to be especially deleterious with respect to fat-induced insulin insensitivity. But this insulin resistance in our muscles starts years before diabetes is diagnosed.

In my video, Diabetes as a Disease of Fat Toxicity, you can see that insulin resistance starts over a decade before diabetes is actually diagnosed, as blood sugar levels slowly start creeping up. And then, all of the sudden, the pancreas conks out, and blood sugars skyrocket. What could underlie this relatively rapid failure of insulin secretion?

At first, the pancreas pumps out more and more insulin, trying to overcome the fat-induced insulin resistance in the muscles, and high insulin levels can lead to the accumulation of fat in the liver, called fatty liver disease. Before diagnosis of type 2 diabetes, there is a long silent scream from the liver. As fat builds up in our liver, it also becomes resistant to insulin.

Normally, the liver is constantly producing blood sugar to keep our brain alive between meals. As soon as we eat breakfast, though, the insulin released to deal with the meal normally turns off liver glucose production, which makes sense since we don't need it anymore. But when our liver is filled with fat, it becomes insulin resistant like our muscles, and doesn't respond to the breakfast signal; it keeps pumping out blood sugar all day long on top of whatever we eat. Then the pancreas pumps out even more insulin to deal with the high sugars, and our liver gets fatter and fatter. That's one of the twin vicious cycles of diabetes. Fatty muscles, in the context of too many calories, leads to a fatty liver, which leads to an even fattier liver. This is all still before we have diabetes.

Fatty liver can be deadly. The liver starts trying to offload the fat by dumping it back into the bloodstream in the form of something called VLDL, and that starts building up in the cells in the pancreas that produce the insulin in the first place. Now we know how diabetes develops: fatty muscles lead to a fatty liver, which leads to a fatty pancreas. It is now clear that type 2 diabetes is a condition of excess fat inside our organs, whether we're obese or not.

The only thing that was keeping us from diabetes-unchecked skyrocketing blood sugars-is that the pancreas was working overtime pumping out extra insulin to overcome insulin resistance. But as the so-called islet or Beta cells in the pancreas are killed off by the fatty buildup, insulin production starts to fail, and we're left with the worst of both worlds: insulin resistance combined with a failing pancreas. Unable to then overcome the resistance, blood sugar levels go up and up, and boom: type 2 diabetes.

This has implications for cancer as well. Obesity leads to insulin resistance and our blood sugars start to go up, so our pancreas starts pumping out more insulin to try to force more sugar into our muscles, and eventually the fat spills over into the pancreas, killing off the insulin-producing cells. Then we develop diabetes, in which case we may have to start injecting insulin at high levels to overcome the insulin-resistance, and these high insulin levels promote cancer. That's one of the reasons we think obese women get more breast cancer. It all traces back to fat getting into our muscle cells, causing insulin resistance: fat from our stomach (obesity) or fat going into our stomach (saturated fats in our diet).

Now it should make sense why the American Diabetes Association recommends reduced intake of dietary fat as a strategy for reducing the risk for developing diabetes.


The reason I'm going into all this detail is that I'm hoping to empower both those suffering from the disease and those treating sufferers so as to better understand dietary interventions to prevent and treat the epidemic.

Here are some videos on prevention:

And here are some on treatment:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nephron. This image has been modified.

Original Link

How Exactly Does Type 2 Diabetes Develop?

How Exactly Does Type 2 Diabetes Develop.jpeg

Insulin resistance is the cause of both prediabetes and type 2 diabetes. OkK, so what is the cause of insulin resistance? Insulin resistance is now accepted to be closely associated with the accumulation of fat within our muscle cells. This fat toxicity inside of our muscles is a major factor in the cause of insulin resistance and type 2 diabetes, as it interferes with the action of insulin. I've explored how fat makes our muscles insulin resistant (see What Causes Insulin Resistance?), how that fat can come from the fat we eat or the fat we wear (see The Spillover Effect Links Obesity to Diabetes), and how not all fats are the same (see Lipotoxicity: How Saturated Fat Raises Blood Sugar). It's the type of fat found predominantly in animal fats, relative to plant fats, that appears to be especially deleterious with respect to fat-induced insulin insensitivity. But this insulin resistance in our muscles starts years before diabetes is diagnosed.

In my video, Diabetes as a Disease of Fat Toxicity, you can see that insulin resistance starts over a decade before diabetes is actually diagnosed, as blood sugar levels slowly start creeping up. And then, all of the sudden, the pancreas conks out, and blood sugars skyrocket. What could underlie this relatively rapid failure of insulin secretion?

At first, the pancreas pumps out more and more insulin, trying to overcome the fat-induced insulin resistance in the muscles, and high insulin levels can lead to the accumulation of fat in the liver, called fatty liver disease. Before diagnosis of type 2 diabetes, there is a long silent scream from the liver. As fat builds up in our liver, it also becomes resistant to insulin.

Normally, the liver is constantly producing blood sugar to keep our brain alive between meals. As soon as we eat breakfast, though, the insulin released to deal with the meal normally turns off liver glucose production, which makes sense since we don't need it anymore. But when our liver is filled with fat, it becomes insulin resistant like our muscles, and doesn't respond to the breakfast signal; it keeps pumping out blood sugar all day long on top of whatever we eat. Then the pancreas pumps out even more insulin to deal with the high sugars, and our liver gets fatter and fatter. That's one of the twin vicious cycles of diabetes. Fatty muscles, in the context of too many calories, leads to a fatty liver, which leads to an even fattier liver. This is all still before we have diabetes.

Fatty liver can be deadly. The liver starts trying to offload the fat by dumping it back into the bloodstream in the form of something called VLDL, and that starts building up in the cells in the pancreas that produce the insulin in the first place. Now we know how diabetes develops: fatty muscles lead to a fatty liver, which leads to a fatty pancreas. It is now clear that type 2 diabetes is a condition of excess fat inside our organs, whether we're obese or not.

The only thing that was keeping us from diabetes-unchecked skyrocketing blood sugars-is that the pancreas was working overtime pumping out extra insulin to overcome insulin resistance. But as the so-called islet or Beta cells in the pancreas are killed off by the fatty buildup, insulin production starts to fail, and we're left with the worst of both worlds: insulin resistance combined with a failing pancreas. Unable to then overcome the resistance, blood sugar levels go up and up, and boom: type 2 diabetes.

This has implications for cancer as well. Obesity leads to insulin resistance and our blood sugars start to go up, so our pancreas starts pumping out more insulin to try to force more sugar into our muscles, and eventually the fat spills over into the pancreas, killing off the insulin-producing cells. Then we develop diabetes, in which case we may have to start injecting insulin at high levels to overcome the insulin-resistance, and these high insulin levels promote cancer. That's one of the reasons we think obese women get more breast cancer. It all traces back to fat getting into our muscle cells, causing insulin resistance: fat from our stomach (obesity) or fat going into our stomach (saturated fats in our diet).

Now it should make sense why the American Diabetes Association recommends reduced intake of dietary fat as a strategy for reducing the risk for developing diabetes.


The reason I'm going into all this detail is that I'm hoping to empower both those suffering from the disease and those treating sufferers so as to better understand dietary interventions to prevent and treat the epidemic.

Here are some videos on prevention:

And here are some on treatment:

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Nephron. This image has been modified.

Original Link

White Meat May Be as Cholesterol-Raising as Red

White Meat May Be as Cholesterol-Raising as Red.jpeg

In light of recommendations for heart healthy eating from national professional organizations encouraging Americans to limit their intake of meat, the beef industry commissioned and co-wrote a review of randomized controlled trials comparing the effects of beef versus chicken and fish on cholesterol levels published over the last 60 years. They found that the impact of beef consumption on the cholesterol profile of humans is similar to that of fish and/or poultry--meaning that switching from red meat to white meat likely wouldn't make any difference. And that's really no surprise, given how fat we've genetically manipulated chickens to be these days, up to ten times more fat than they had a century ago (see Does Eating Obesity Cause Obesity?).

There are a number of cuts of beef that have less cholesterol-raising saturated fat than chicken (see BOLD Indeed: Beef Lowers Cholesterol?), so it's not so surprising that white meat was found to be no better than red, but the beef industry researchers conclusion was that "therefore you can eat beef as part of a balanced diet to manage your cholesterol."

Think of the Coke versus Pepsi analogy. Coke has less sugar than Pepsi: 15 spoonfuls of sugar per bottle instead of 16. If studies on blood sugar found no difference between drinking Coke versus Pepsi, you wouldn't conclude that "Pepsi may be considered when recommending diets for the management of blood sugars," you'd say they're both equally as bad so we should ideally consume neither.

That's a standard drug industry trick. You don't compare your fancy new drug to the best out there, but to some miserable drug to make yours look better. Note they didn't compare beef to plant proteins, like in this study published in the American Journal of Clinical Nutrition. As I started reading it, though, I was surprised that they found no benefit of switching to a plant protein diet either. What were they eating? You can see the comparison in Switching from Beef to Chicken & Fish May Not Lower Cholesterol.

For breakfast, the plant group got a kidney bean and tomato casserole and a salad, instead of a burger. And for dinner, instead of another burger, the plant protein group just got some boring vegetables. So why was the cholesterol of the plant group as bad as the animal group? They had the plant protein group eating three tablespoons of beef tallow every day--three tablespoons of straight beef fat!

This was part of a series of studies that tried to figure out what was so cholesterol-raising about meat--was it the animal protein or was it the animal fat? So, researchers created fake meat products made to have the same amount of saturated fat and cholesterol by adding extracted animal fats and cholesterol. Who could they get to make such strange concoctions? The Ralston Purina dog food company.

But what's crazy is that even when keeping the saturated animal fat and cholesterol the same (by adding meat fats to the veggie burgers and making the plant group swallow cholesterol pills to equal it out), sometimes they still saw a cholesterol lowering advantage in the plant protein group.

If you switch people from meat to tofu, their cholesterol goes down, but what if you switch them from meat to tofu plus lard? Then their cholesterol may stay the same, though tofu and lard may indeed actually be better than meat, since it may result in less oxidized cholesterol. More on the role of oxidized cholesterol can be found in my videos Does Cholesterol Size Matter? and Arterial Acne.

Just swapping plant protein for animal protein may have advantages, but if you really want to maximize the power of diet to lower cholesterol, you may have to move entirely toward plants. The standard dietary advice to cut down on fatty meat, dairy, and eggs may lower cholesterol 5-10%, but flexitarian or vegetarian diets may drop our levels 10 to 15%, vegan diets 15 to 25%, and healthier vegan diets can cut up to 35%, as seen in this study out of Canada showing a whopping 61 point drop in LDL cholesterol within a matter of weeks.


You thought chicken was a low-fat food? It used to be a century ago, but not anymore. It may even be one of the reasons we're getting fatter as well: Chicken Big: Poultry and Obesity and Infectobesity: Adenovirus 36 and Childhood Obesity.

Isn't protein just protein? How does our body know if it's coming from a plant or an animal? How could it have different effects on cardiovascular risk? See Protein and Heart Disease, another reason why Plant Protein [is] Preferable.

Lowering cholesterol in your blood is as simple as reducing one's intake of three things: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

What about those news stories on the "vindication" of saturated fat? See the sneaky science in The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: CDC/Debora Cartagena via Freestockphotos.biz. This image has been modified.

Original Link

White Meat May Be as Cholesterol-Raising as Red

White Meat May Be as Cholesterol-Raising as Red.jpeg

In light of recommendations for heart healthy eating from national professional organizations encouraging Americans to limit their intake of meat, the beef industry commissioned and co-wrote a review of randomized controlled trials comparing the effects of beef versus chicken and fish on cholesterol levels published over the last 60 years. They found that the impact of beef consumption on the cholesterol profile of humans is similar to that of fish and/or poultry--meaning that switching from red meat to white meat likely wouldn't make any difference. And that's really no surprise, given how fat we've genetically manipulated chickens to be these days, up to ten times more fat than they had a century ago (see Does Eating Obesity Cause Obesity?).

There are a number of cuts of beef that have less cholesterol-raising saturated fat than chicken (see BOLD Indeed: Beef Lowers Cholesterol?), so it's not so surprising that white meat was found to be no better than red, but the beef industry researchers conclusion was that "therefore you can eat beef as part of a balanced diet to manage your cholesterol."

Think of the Coke versus Pepsi analogy. Coke has less sugar than Pepsi: 15 spoonfuls of sugar per bottle instead of 16. If studies on blood sugar found no difference between drinking Coke versus Pepsi, you wouldn't conclude that "Pepsi may be considered when recommending diets for the management of blood sugars," you'd say they're both equally as bad so we should ideally consume neither.

That's a standard drug industry trick. You don't compare your fancy new drug to the best out there, but to some miserable drug to make yours look better. Note they didn't compare beef to plant proteins, like in this study published in the American Journal of Clinical Nutrition. As I started reading it, though, I was surprised that they found no benefit of switching to a plant protein diet either. What were they eating? You can see the comparison in Switching from Beef to Chicken & Fish May Not Lower Cholesterol.

For breakfast, the plant group got a kidney bean and tomato casserole and a salad, instead of a burger. And for dinner, instead of another burger, the plant protein group just got some boring vegetables. So why was the cholesterol of the plant group as bad as the animal group? They had the plant protein group eating three tablespoons of beef tallow every day--three tablespoons of straight beef fat!

This was part of a series of studies that tried to figure out what was so cholesterol-raising about meat--was it the animal protein or was it the animal fat? So, researchers created fake meat products made to have the same amount of saturated fat and cholesterol by adding extracted animal fats and cholesterol. Who could they get to make such strange concoctions? The Ralston Purina dog food company.

But what's crazy is that even when keeping the saturated animal fat and cholesterol the same (by adding meat fats to the veggie burgers and making the plant group swallow cholesterol pills to equal it out), sometimes they still saw a cholesterol lowering advantage in the plant protein group.

If you switch people from meat to tofu, their cholesterol goes down, but what if you switch them from meat to tofu plus lard? Then their cholesterol may stay the same, though tofu and lard may indeed actually be better than meat, since it may result in less oxidized cholesterol. More on the role of oxidized cholesterol can be found in my videos Does Cholesterol Size Matter? and Arterial Acne.

Just swapping plant protein for animal protein may have advantages, but if you really want to maximize the power of diet to lower cholesterol, you may have to move entirely toward plants. The standard dietary advice to cut down on fatty meat, dairy, and eggs may lower cholesterol 5-10%, but flexitarian or vegetarian diets may drop our levels 10 to 15%, vegan diets 15 to 25%, and healthier vegan diets can cut up to 35%, as seen in this study out of Canada showing a whopping 61 point drop in LDL cholesterol within a matter of weeks.


You thought chicken was a low-fat food? It used to be a century ago, but not anymore. It may even be one of the reasons we're getting fatter as well: Chicken Big: Poultry and Obesity and Infectobesity: Adenovirus 36 and Childhood Obesity.

Isn't protein just protein? How does our body know if it's coming from a plant or an animal? How could it have different effects on cardiovascular risk? See Protein and Heart Disease, another reason why Plant Protein [is] Preferable.

Lowering cholesterol in your blood is as simple as reducing one's intake of three things: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

What about those news stories on the "vindication" of saturated fat? See the sneaky science in The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: CDC/Debora Cartagena via Freestockphotos.biz. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What Not to Add to White Rice, Potatoes, or Pasta

What Not to Add to White Rice, Potatoes, or Pasta.jpeg

Rice currently feeds almost half the human population, making it the single most important staple food in the world, but a meta-analysis of seven cohort studies following 350,000 people for up to 20 years found that higher consumption of white rice was associated with a significantly increased risk of type 2 diabetes, especially in Asian populations. They estimated each serving per day of white rice was associated with an 11% increase in risk of diabetes. This could explain why China has almost the same diabetes rates as we do.

Diabetes rates in China are at about 10%; we're at about 11%, despite seven times less obesity in China. Japan has eight times less obesity than we do, yet may have a higher incidence of newly diagnosed diabetes cases than we do--nine per a thousand compared to our eight. They're skinnier and still may have more diabetes. Maybe it's because of all the white rice they eat.

Eating whole fruit is associated with lower risk of diabetes, whereas eating fruit processed into juice may not just be neutral, but actually increases diabetes risk. In the same way, eating whole grains, like whole wheat bread or brown rice is associated with lower risk of diabetes, whereas eating white rice, a processed grain, may not just be neutral, but actually increase diabetes risk.

White rice consumption does not appear to be associated with increased risk of heart attack or stroke, though, which is a relief after an earlier study in China suggested a connection with stroke. But do we want to eat a food that's just neutral regarding some of our leading causes of death, when we can eat whole foods that are associated with lower risk of diabetes, heart attack, stroke, and weight gain?

If the modern diabetes epidemic in China and Japan has been linked to white rice consumption, how can we reconcile that with low diabetes rates just a few decades ago when they ate even more rice? If you look at the Cornell-Oxford-China Project, rural plant-based diets centered around rice were associated with relatively low risk of the so-called diseases of affluence, which includes diabetes. Maybe Asians just genetically don't get the same blood sugar spike when they eat white rice? This is not the case; if anything people of Chinese ethnicity get higher blood sugar spikes.

The rise in these diseases of affluence in China over the last half century has been blamed in part on the tripling of the consumption of animal source foods. The upsurge in diabetes has been most dramatic, and it's mostly just happened over the last decade. That crazy 9.7% diabetes prevalence figure that rivals ours is new--they appeared to have one of the lowest diabetes rates in the world in the year 2000.

So what happened to their diets in the last 20 years or so? Oil consumption went up 20%, pork consumption went up 40%, and rice consumption dropped about 30%. As diabetes rates were skyrocketing, rice consumption was going down, so maybe it's the animal products and junk food that are the problem. Yes, brown rice is better than white rice, but to stop the mounting Asian epidemic, maybe we should focus on removing the cause--the toxic Western diet. That would be consistent with data showing animal protein and fat consumption associated with increased diabetes risk.

But that doesn't explain why the biggest recent studies in Japan and China associate white rice intake with diabetes. One possibility is that animal protein is making the rice worse. If you feed people mashed white potatoes, a high glycemic food like white rice, you can see in my video If White Rice is Linked to Diabetes, What About China? the level of insulin your pancreas has to pump out to keep your blood sugars in check. But what if you added some tuna fish? Tuna doesn't have any carbs, sugar, or starch so it shouldn't make a difference. Or maybe it would even lower the mashed potato spike by lowering the glycemic load of the whole meal? Instead you get twice the insulin spike. This also happens with white flour spaghetti versus white flour spaghetti with meat. The addition of animal protein makes the pancreas work twice as hard.

You can do it with straight sugar water too. If you do a glucose challenge test to test for diabetes, where you drink a certain amount of sugar and add some meat, you get a much bigger spike than without meat. And the more meat you add, the worse it gets. Just adding a little meat to carbs doesn't seem to do much, but once you get up to around a third of a chicken breast's worth, you can elicit a significantly increased surge of insulin. This may help explain why those eating plant-based have such low diabetes rates, because animal protein can markedly potentiate the insulin secretion triggered by carbohydrate ingestion.

The protein exacerbation of the effect of refined carbs could help explain the remarkable results achieved by Dr. Kempner with a don't-try-this-at-home diet composed of mostly white rice and sugar. See my video, Kempner Rice Diet: Whipping Us Into Shape.

Refined grains may also not be good for our blood pressure (see Whole Grains May Work As Well As Drugs).

What should we be eating to best decrease our risk of diabetes? See:

And check out my summary video, How Not to Die from Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Sally Plank / Flickr. This image has been modified.

Original Link

What’s the Mediterranean Diet’s Secret?

Why Was Heart Disease Rare in the Mediterranean?.jpg

The Mediterranean Diet is an "in" topic nowadays in both the medical literature and the lay media. As one researcher put it, "Uncritical laudatory coverage is common, but specifics are hard to come by: What is it? Where did it come from? Why is it good? Merits are rarely detailed; possible downsides are never mentioned." So, let's dig in....

After World War II, the government of Greece asked the Rockefeller foundation to come in and assess the situation. Impressed by the low rates of heart disease in the region, nutrition scientist Ancel Keys--after which "K" rations were named--initiated his famous seven countries study. In this study, he found the rate of fatal heart disease on the Greek isle of Crete was 20 times lower than in the United States. They also had the lowest cancer rates and fewest deaths overall. What were they eating? Their diets were more than 90% plant-based, which may explain why coronary heart disease was such a rarity. A rarity, that is, except for a small class of rich people whose diet differed from that of the general population--they ate meat every day instead of every week or two.

So, the heart of the Mediterranean diet is mainly plant-based, and low in meat and dairy, which Keys considered the "major villains in the diet" because of their saturated fat content. Unfortunately, no one is really eating the traditional Mediterranean diet anymore, even in the Mediterranean. The prevalence of coronary heart disease skyrocketed by an order of magnitude within a few decades in Crete, blamed on the increased consumption of meat and cheese at the expense of plant foods.

Everyone is talking about the Mediterranean diet, but few do it properly. People think of pizza or spaghetti with meat sauce, but while "Italian restaurants brag about the healthy measuring in diet, they serve a travesty of it." If no one's really eating this way anymore, how do you study it?

Researchers came up with a variety of Mediterranean diet adherence scoring systems to see if people who are eating more Mediterranean-ish do better. You get maximum points the more plant foods you eat, and effectively you get points deducted by eating just a single serving of meat or dairy a day. So it's no surprise those that eat relatively higher on the scale have a lower risk of heart disease, cancer, and death overall. After all, the Mediterranean diet can be considered to be a "near vegetarian" diet. "As such, it should be expected to produce the well-established health benefits of vegetarian diets." That is, less heart disease, cancer, death, and inflammation; improved arterial function; a lower risk of developing type 2 diabetes; a reduced risk for stroke, depression, and cognitive impairment.

How might it work? I've talked about the elegant studies showing that those who eat plant-based diets have more plant-based compounds, like aspirin, circulating within their systems. Polyphenol phytonutrients in plant foods are associated with a significantly lower risk of dying. Magnesium consumption is also associated with a significantly lower risk of dying, and is found in dark green leafy vegetables, as well as fruits, beans, nuts, soy, and whole grains.

Heme iron, on the other hand--the iron found in blood and muscle--acts as a pro-oxidant and appears to increase the risk of diabetes, whereas plant-based, non-heme iron appears safe. Similarly, with heart disease, animal-based iron was found to significantly increase the risk of coronary heart disease, our number one killer, but not plant-based iron. The Mediterranean diet is protective compared to the Standard American Diet--no question--but any diet rich in whole plant foods and low in animal-fat consumption could be expected to confer protection against many of our leading killers.

Here are some more videos on the Mediterranean Diet:

For more information on heme iron, see Risk Associated With Iron Supplements.

More on magnesium is found in How Do Nuts Prevent Sudden Cardiac Death? and Mineral of the Year--Magnesium.

And more on polyphenols can be seen in videos like How to Slow Brain Aging by Two Years and Juicing Removes More Than Just Fiber.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Couleur / Pixabay. This image has been modified.

Original Link

What’s the Mediterranean Diet’s Secret?

Why Was Heart Disease Rare in the Mediterranean?.jpg

The Mediterranean Diet is an "in" topic nowadays in both the medical literature and the lay media. As one researcher put it, "Uncritical laudatory coverage is common, but specifics are hard to come by: What is it? Where did it come from? Why is it good? Merits are rarely detailed; possible downsides are never mentioned." So, let's dig in....

After World War II, the government of Greece asked the Rockefeller foundation to come in and assess the situation. Impressed by the low rates of heart disease in the region, nutrition scientist Ancel Keys--after which "K" rations were named--initiated his famous seven countries study. In this study, he found the rate of fatal heart disease on the Greek isle of Crete was 20 times lower than in the United States. They also had the lowest cancer rates and fewest deaths overall. What were they eating? Their diets were more than 90% plant-based, which may explain why coronary heart disease was such a rarity. A rarity, that is, except for a small class of rich people whose diet differed from that of the general population--they ate meat every day instead of every week or two.

So, the heart of the Mediterranean diet is mainly plant-based, and low in meat and dairy, which Keys considered the "major villains in the diet" because of their saturated fat content. Unfortunately, no one is really eating the traditional Mediterranean diet anymore, even in the Mediterranean. The prevalence of coronary heart disease skyrocketed by an order of magnitude within a few decades in Crete, blamed on the increased consumption of meat and cheese at the expense of plant foods.

Everyone is talking about the Mediterranean diet, but few do it properly. People think of pizza or spaghetti with meat sauce, but while "Italian restaurants brag about the healthy measuring in diet, they serve a travesty of it." If no one's really eating this way anymore, how do you study it?

Researchers came up with a variety of Mediterranean diet adherence scoring systems to see if people who are eating more Mediterranean-ish do better. You get maximum points the more plant foods you eat, and effectively you get points deducted by eating just a single serving of meat or dairy a day. So it's no surprise those that eat relatively higher on the scale have a lower risk of heart disease, cancer, and death overall. After all, the Mediterranean diet can be considered to be a "near vegetarian" diet. "As such, it should be expected to produce the well-established health benefits of vegetarian diets." That is, less heart disease, cancer, death, and inflammation; improved arterial function; a lower risk of developing type 2 diabetes; a reduced risk for stroke, depression, and cognitive impairment.

How might it work? I've talked about the elegant studies showing that those who eat plant-based diets have more plant-based compounds, like aspirin, circulating within their systems. Polyphenol phytonutrients in plant foods are associated with a significantly lower risk of dying. Magnesium consumption is also associated with a significantly lower risk of dying, and is found in dark green leafy vegetables, as well as fruits, beans, nuts, soy, and whole grains.

Heme iron, on the other hand--the iron found in blood and muscle--acts as a pro-oxidant and appears to increase the risk of diabetes, whereas plant-based, non-heme iron appears safe. Similarly, with heart disease, animal-based iron was found to significantly increase the risk of coronary heart disease, our number one killer, but not plant-based iron. The Mediterranean diet is protective compared to the Standard American Diet--no question--but any diet rich in whole plant foods and low in animal-fat consumption could be expected to confer protection against many of our leading killers.

Here are some more videos on the Mediterranean Diet:

For more information on heme iron, see Risk Associated With Iron Supplements.

More on magnesium is found in How Do Nuts Prevent Sudden Cardiac Death? and Mineral of the Year--Magnesium.

And more on polyphenols can be seen in videos like How to Slow Brain Aging by Two Years and Juicing Removes More Than Just Fiber.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Couleur / Pixabay. This image has been modified.

Original Link

Lipotoxicity: How Saturated Fat Raises Blood Sugar

NF-Nov24 Lipotoxicity How Saturated Fat Raises Blood Sugar copy.jpg

The reason those eating plant-based diets have less fat buildup in their muscle cells and less insulin resistance may be because saturated fats appear to impair blood sugar control the most.

The association between fat and insulin resistance is now widely accepted. Insulin resistance is due to so-called ectopic fat accumulation, the buildup of fat in places it's not supposed to be, like within our muscle cells. But not all fats affect the muscles the same. The type of fat, saturated vs. unsaturated, is critical. Saturated fats like palmitate, found mostly in meat, dairy and eggs, cause insulin resistance, but oleate, found mostly in nuts, olives and avocados may actually improve insulin sensitivity.

What makes saturated fat bad? Saturated fat causes more toxic breakdown products and mitochondrial dysfunction, and increases oxidative stress, free radicals and inflammation, establishing a vicious cycle of events in which saturated fat induces free radicals, causes dysfunction in the little power plants within our muscle cells (mitochondria), which then causes an increase in free radical production and an impairment of insulin signaling. I explain this in my video Lipotoxicity: How Saturated Fat Raises Blood Sugar.

Fat cells filled with saturated fat activate an inflammatory response to a far greater extent. This increased inflammation from saturated fat has been demonstrated to raise insulin resistance through free radical production. Saturated fat also has been shown to have a direct effect on skeletal muscle insulin resistance. Accumulation of saturated fat increases the amount of diacyl-glycerol in the muscles, which has been demonstrated to have a potent effect on muscle insulin resistance. You can take muscle biopsies from people and correlate the saturated fat buildup in their muscles with insulin resistance.

While monounsaturated fats are more likely to be detoxified or safely stored away, saturated fats create those toxic breakdown products like ceramide that causes lipotoxicity. Lipo- meaning fat, as in liposuction. This fat toxicity in our muscles is a well-known concept in the explanation of trigger for insulin resistance.

I've talked about the role saturated and trans fats contribute to the progression of other diseases, like autoimmune diseases, cancer and heart disease, but they can also cause insulin resistance, the underlying cause of prediabetes and type 2 diabetes. In the human diet, saturated fats are derived from animal sources while trans fats originate in meat and milk in addition to partially hydrogenated and refined vegetable oils.

That's why experimentally shifting people from animal fats to plant fats can improve insulin sensitivity. In a study done by Swedish researchers, insulin sensitivity was impaired on the diet with added butterfat, but not on the diet with added olive fat.

We know prolonged exposure of our muscles to high levels of fat leads to severe insulin resistance, with saturated fats demonstrated to be the worst, but they don't just lead to inhibition of insulin signaling, the activation of inflammatory pathways and the increase in free radicals, they also cause an alteration in gene expression. This can lead to a suppression of key mitochondrial enzymes like carnitine palmitoyltransferase, which finally solves the mystery of why those eating vegetarian have a 60 percent higher expression of that fat burning enzyme. They're eating less saturated fat.

So do those eating plant-based diets have less fat clogging their muscles and less insulin resistance too? There hasn't been any data available regarding the insulin sensitivity or inside muscle cell fat of those eating vegan or vegetarian... until now. Researchers at the Imperial College of London compared the insulin resistance and muscle fat of vegans versus omnivores. Those eating plant-based diets have the unfair advantage of being much slimmer, so they found omnivores who were as skinny as vegans to see if plant-based diets had a direct benefit, as opposed to indirectly pulling fat out of the muscles by helping people lose weight in general.

They found significantly less fat trapped in the muscle cells of vegans compared to omnivores at the same body weight, better insulin sensitivity, better blood sugar levels, better insulin levels and, excitingly, significantly improved beta-cell function (the cells in the pancreas that make the insulin). They conclude that eating plant-based is not only expected to be cardioprotective, helping prevent our #1 killer, heart disease, but that plant-based diets are beta-cell protective as well, helping also to prevent our seventh leading cause of death, diabetes.

This is the third of a three-part series, starting with What Causes Insulin Resistance? and The Spillover Effect Links Obesity to Diabetes.

Even if saturated fat weren't associated with heart disease, its effects on pancreatic function and insulin resistance in the muscles would be enough to warrant avoiding it. Despite popular press accounts, saturated fat intake remains the primary modifiable determinant of LDL cholesterol, the #1 risk factor for our #1 killer-heart disease. See The Saturated Fat Studies: Buttering Up the Public and The Saturated Fat Studies: Set Up to Fail.

How low should we shoot for in terms of saturated fat intake? As low as possible, according to the U.S. National Academies of Science Institute of Medicine: Trans Fat, Saturated Fat, and Cholesterol: Tolerable Upper Intake of Zero.

In health,

Michael Greger, M.D.

PS: If you haven't yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Image Credit: Andrew Malone / Flickr

Original Link